分析 (1)根據(jù)平面幾何知識(shí)求出AB,取PB中點(diǎn)N,連接MN,CN.根據(jù)中位線定理和平行公理可得四邊形MNCD是平行四邊形,得出DM∥CN,故而有DM∥平面PBC;
(2)利用特殊角的性質(zhì)得出PD,計(jì)算棱錐的底面△BCD的面積,代入棱錐的體積公式計(jì)算.
解答 (1)證明:過(guò)C作CE⊥AB與E
則AE=CD=3,CE=AD=4,
∴BE=$\sqrt{B{C}^{2}-C{E}^{2}}=3$,
∴AB=AE+BE=6.
取PB中點(diǎn)N,連接MN,CN.
則MN是△PAB的中位線,
∴MN∥AB,MN=$\frac{1}{2}$AB=3,
又CD∥AB,CD=3,
∴MN∥CD,MN=CD,
∴四邊形MNCD為平行四邊形,
∴DM∥CN,又DM?平面PBC,CN?平面PBC,
∴DM∥平面PBC.
(2)解:∵PD⊥平面ABCD,AD?平面ABCD,
∴PD⊥AD,∵∠PAD=60°,
∴PD=$\sqrt{3}$AD=4$\sqrt{3}$.
又S△DBC=$\frac{1}{2}CD×AD$=6,
∴VD-PBC=VP-DBC=$\frac{1}{3}$S△DBC•PD=$\frac{1}{3}×6×4\sqrt{3}$=8$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了線面平行的判定,線面垂直的性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,+∞) | B. | (2,6) | C. | [2,6] | D. | [-4,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{3\sqrt{10}}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com