已知y=
2
x
,則其導數(shù)y′=
 
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:利用基本初等函數(shù)的求導公式解答.
解答: 解:由已知,y′=(2x -
1
2
)′=-x -
3
2

故答案為:-x -
3
2
點評:本題考查了對函數(shù)求導;如果解析式是根式的形式,要化為冪的形式,然后求導.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
cosA
cosB
=
b
a
,且∠C=
2
3
π

(Ⅰ)求角A,B的大;
(Ⅱ)設函數(shù)f(x)=sin(x+A)+cosx,求f(x)在[-
π
6
,
π
3
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-a
(x-1)2
(x∈(1,+∞))
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[2,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
x-2
|x|-1
<0
的解集為( 。
A、{x|1<x<2}
B、{x|x<2且x≠1}
C、{x|-1<x<2且x≠1}
D、{x|x<-1或1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的首項為a1,公比為q(q≠-1),用Sn→m表示這個數(shù)列的第n項到第m項共m-n+1項的和.
(Ⅰ)計算S1→3,S4→6,S7→9,并證明它們?nèi)猿傻缺葦?shù)列;
(Ⅱ)受上面(Ⅰ)的啟發(fā),你能發(fā)現(xiàn)更一般的規(guī)律嗎?寫出你發(fā)現(xiàn)的一般規(guī)律,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“0<x<3”是“|x-1|<1”的必要不充分條件
C、命題“?x∈R,使得x2+x-1<0”的否定是:“?x∈R,均有x2+x-1>0”
D、命題“若x=y,則sinx=siny”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個運行程序框圖,則輸出的S=( 。
A、7B、11C、14D、25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過正方形ABCD的一個頂點D作SD⊥平面ABCD,SD=
3
3
AD.,則二面角S-AB-C的度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={3,2,a2+2a-3},B={|a+3|,2},若5∈A,且5∉B,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案