8.設(shè)正方體的所有棱長都為a,頂點都在一個球面上,則該球的表面積為( 。
A.πa2B.2πa2C.3πa2D.12πa2

分析 正方體的對角線就是球的直徑,求出后,即可求出球的表面積.

解答 解:正方體的對角線就是球的直徑,2R=$\sqrt{3}$a⇒R=$\frac{\sqrt{3}}{2}$a⇒S=4πR2=3πa2
故選:C.

點評 本題考查球的表面積,考查學生空間想象能力,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知數(shù)列{an}滿足an=logn+1(n+2)(n∈N*),定義:使乘積a1•a2•a3…ak為正整數(shù)的k(k∈N*)叫做“期盼數(shù)”,則在區(qū)間[1,2016]內(nèi)所有的“期盼數(shù)”的和為( 。
A.2036B.4076C.4072D.2026

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.曲線y=x+$\frac{1}{3}$x3在點(1,$\frac{4}{3}$)處的切線和坐標軸圍成的三角形的面積為( 。
A.3B.2C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知△OAB的頂點坐標為O(0,0),A(1,3),B(6,-2),又點P(-2,1),點Q是邊AB上一點,且$\overrightarrow{OQ}$•$\overrightarrow{AP}$=-10.
(1)求點Q的坐標;
(2)若R為線段OQ(含端點)上的一個動點,試求($\overrightarrow{RO}$+$\overrightarrow{RP}$)•($\overrightarrow{RA}$+$\overrightarrow{RB}$)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知tan(α-π)=$\frac{3}{4}$,化簡計算:sin2α+2cos2α=$\frac{56}{25}$(填數(shù)值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.關(guān)于函數(shù)f(x)=tan(cosx),下列結(jié)論中正確的是( 。
A.定義域是[-1,1]B.f(x)是奇函數(shù)
C.值域是[-tan1,tan1]D.在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.用反證法證明命題“若a2+b2=0,則a,b全為0 (a,b為實數(shù))”,其反設(shè)為a,b不全為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知某幾何體如圖所示,若四邊形ADMN為矩形,四邊形ABCD為菱形,且∠DAB=60°,平面ADNM⊥平面ABCD,E為AB中點,AD=2,AM=1.
(1)求證:AN∥平面MEC;
(2)在線段AM上是否存在點P,使二面角P-EC-D的大小為$\frac{π}{6}$?若存在,求出線段AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知不等式x2-2x+5-2a≥0
(Ⅰ)若不等式對于任意實數(shù)x恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若存在實數(shù)a∈[4,6]使得該不等式成立,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習冊答案