A. | [-8,-4+2$\sqrt{5}$) | B. | (-4-2$\sqrt{5}$,-4+2$\sqrt{5}$) | C. | (-4+2$\sqrt{5}$,8] | D. | (-4-2$\sqrt{5}$,-8] |
分析 先利用導(dǎo)數(shù)研究在點(diǎn)(1,2)處的切線方程,然后作出函數(shù)圖象,隨著b減小時(shí),半圓向下移動(dòng),當(dāng)點(diǎn)A(-4,b)落在切線上時(shí),在點(diǎn)(1,2)處的切線與f(x)的圖象有三個(gè)公共點(diǎn),直到半圓與直線相切前,切線f(x)的圖象都有三個(gè)公共點(diǎn),只需求出零界位置的值即可.
解答 解:當(dāng)x>0時(shí),f(x)=x2+1,
則f′(x)=2x,
∴f′(1)=2×1=2,
則在點(diǎn)(1,2)處的切線方程為y=2x,
當(dāng)x≤0時(shí),y=f(x)=$\sqrt{-{x}^{2}-4x}$+b,
即(x+2)2+(y-b)2=4(y≥b)
作出函數(shù)圖象如右圖
隨著b減小時(shí),半圓向下移動(dòng),當(dāng)點(diǎn)A(-4,b)落在切線上時(shí),在點(diǎn)(1,2)處的切線與f(x)的圖象有三個(gè)公共點(diǎn),即b=2×(-4)=-8,
再向下移動(dòng),直到半圓與直線相切前,切線f(x)的圖象有三個(gè)公共點(diǎn),相切時(shí)與f(x)的圖象有兩個(gè)交點(diǎn)
即$\frac{|-4-b|}{\sqrt{5}}$=2,解得b=-4-2$\sqrt{5}$<-8
∴b的取值范圍是(-4-2$\sqrt{5}$,-8].
故選:D.
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及函數(shù)圖象,同時(shí)考查了數(shù)形結(jié)合的數(shù)學(xué)思想和分析問(wèn)題的能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A. | 0.1% | B. | 1% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0” | |
B. | “命題p∨q為真命題”是“命題p∧q為真命題”的充分不必要條件 | |
C. | ?m∈R,使f(x)=mx${\;}^{{m^2}+2m}}$是冪函數(shù),且函數(shù)f(x)在(0,+∞)上單調(diào)遞增 | |
D. | 若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | R=l | B. | l=2R | C. | l=$\frac{1}{2}$R | D. | l與R沒(méi)有關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com