7.已知x,y滿足$\left\{\begin{array}{l}kx-y+2≥0\\ x+y-2≥0\\ y≥0\end{array}\right.(k<0)$,若目標函數(shù)z=y-x的最小值是-4,則k的值為( 。
A.$-\frac{1}{3}$B.-3C.$-\frac{1}{2}$D.-2

分析 作出不等式組對應的平面區(qū)域,根據(jù)目標是的最小值建立不等式關(guān)系進行求解即可.

解答 解:由z=y-x得y=x+z,
若z=y-x的最小值為-4,即y-x=-4,
即y=x-4,
則不等式對應的區(qū)域在y=x-4的上方,
先作出$\left\{\begin{array}{l}{y=0}\\{x+y-2=0}\\{y=x-4}\end{array}\right.$對應的圖象,
由$\left\{\begin{array}{l}{y=0}\\{y=x-4}\end{array}\right.$得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即C(4,0),
同時C(4,0)也在直線kx-y+2=0上,
則4k+2=0,得k=$-\frac{1}{2}$,
故選:C.

點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=$\frac{{{x^2}+2x+2}}{x+1}$的值域是( 。
A.{y|y<-2或y>2}B.{y|y≤-2或y≥2}C.{y|-2≤y≤2}D.$\left\{{y|y≤-2\sqrt{2}或y≥2\sqrt{2}}\right\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.定義:對于函數(shù)f(x),若存在非零常數(shù)M,T,使函數(shù)f(x)對于定義域內(nèi)的任意實數(shù)x,都有f(x+T)-f(x)=M,則稱函數(shù)f(x)是廣義周期函數(shù),稱T為函數(shù)f(x)的廣義周期,稱M為周距
(1)證明函數(shù)f(x)=x2不是廣義周期函數(shù);
(2)試判斷函數(shù)f(x)=kx+b+Asin(ωx+φ)(k、A、ω、φ為常數(shù),k≠0,A>0,ω>0)是否為廣義周期函數(shù),若是,請求出它的一個廣義周期T和周距M,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{5}}{2}$,過右焦點F作漸近線的垂線,垂足為A,若△OFA的面積為2,其中O為坐標原點,則雙曲線的焦距為(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.2$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)x,y∈[$\frac{1}{3}$,1],則y+$\frac{x}{\sqrt{4{x}^{2}({y}^{2}+1)-4x+1}}$的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.參數(shù)t為實數(shù),則復數(shù)z=t2+$\frac{i}{{t}^{2}}$對應的點P的軌跡是xy=1(x>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知點P是雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與圓C2:x2+y2=a2+b2的一個交點,且∠PF1F2=60°,其中F1、F2分別為雙曲線C1的左、右焦點,則雙曲線C1的離心率為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.己知集合A={x||x-1|<1},$B=\{x|\frac{2}{x-1}≥1\}$,$C=\left\{{x\left|{lg(2ax)<lg(a+x),a>\frac{1}{2}}\right.}\right\}$,
(Ⅰ)求A∩B
(Ⅱ)若“x∈A∩B”是“x∈C”的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)某總體是由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號是11.
7816 6572 0802 6316 0702 4369 9728 1198
3204 9234 4935 8200 3623 4869 6938 7481.

查看答案和解析>>

同步練習冊答案