【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

【答案】(Ⅰ)見解析; (Ⅱ).

【解析】試題分析:

(1)由題意可證得平面,利用面面垂直的判斷定理即可證得平面平面.

(2)建立空間直角坐標系,結合平面的法向量和題意可得二面角的余弦值是.

試題解析:

(1)取中點,連接, ,因為是邊長為2的正三角形,所以, ,

,∴,

,

,∴平面,

平面,∴平面平面.

(2)連接,連接,

平面,∴,

的中點,∴的中點.

為原點,分別以、所在直線為、、軸建立空間直角坐標系,

, , , .

設平面的一個法向量為,

,得. 

由圖可知,平面的一個法向量,

∴二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,ACB=60°,E、F分別是A1C1,BC的中點.

(1)證明:平面AEB平面BB1C1C;

(2)證明:C1F平面ABE;

(3)設P是BE的中點,求三棱錐P B1C1F的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點, 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經(jīng)過且與直線垂直的直線交此圓錐曲線, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中a∈R.

Ⅰ)a1時,判斷fx)的單調性;

Ⅱ)gx)在其定義域內為增函數(shù),求正實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設點FAB的中點.

(1)求證:DE⊥平面BCD

(2)若EF∥平面BDG,其中GAC上一點,求三棱錐BDEG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC,DE,F分別為PCAC,AB的中點已知PAAC,PA6BC8,DF5.

求證(1)直線PA∥平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的正視圖和側視圖都是邊長為1的正方形,且體積為,則這個幾何體的俯視圖可能是下列圖形中的________(填入所有可能的圖形前的編號)

①銳角三角形;②直角三角形;③鈍角三角形;④四邊形;⑤扇形;⑥圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調區(qū)間;

(2)若關于的不等式對一切恒成立,求實數(shù)的取值范圍;

(3)求證:對,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點是橢圓上的點

(1)若過點的直線與橢圓有且只有一個公共點,求被橢圓的伴隨圓所截得的弦長:

(2)是橢圓上的兩點,設是直線的斜率,且滿足,試問:直線是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。

查看答案和解析>>

同步練習冊答案