【題目】有一塊圓心角為120度,半徑為的扇形鋼板(為弧的中點(diǎn)),現(xiàn)要將其裁剪成一個(gè)五邊形磨具,其下部為等腰三角形,上部為矩形.設(shè)五邊形的面積為.

(1)寫(xiě)出關(guān)于的函數(shù)表達(dá)式,并寫(xiě)出的取值范圍;

(2)當(dāng)取得最大值時(shí),求的值.

【答案】(1) S=R2sinα(4cosα-1)(0<α<)(2)

【解析】

(1)根據(jù)直角三角形解得矩形的長(zhǎng)與寬以及等腰三角形的底與高,再根據(jù)矩形面積公式以及三角形面積公式求結(jié)果,最后根據(jù)實(shí)際意義確定的取值范圍;(2)利用導(dǎo)數(shù)求函數(shù)最值.

(1)如圖,設(shè)OPCD、AB交于M,N兩點(diǎn),

為弧的中點(diǎn),則MCD中點(diǎn),OPAB,

OM=OCcosα=Rcosα,CM=OCsinα=Rsinα,則EF=CD=2CM=2Rsinα

POB=AOB=60°,OBN=30°,

所以,ON=OB=R,

CF=MN=OM-ON=Rcosα-R

所以,S=CDCF+EFON=2Rsinα×(Rcosα-R)+×2Rsinα×R

   。R2sinα(4cosα-1)(0<α<

(2)設(shè)f(α)=sinα(4cosα-1),則

=0

因?yàn)?/span>0<α<,所以,

由表可,當(dāng)S取得最大值時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是邊長(zhǎng)為3的正方形, 平面 平面, .

(1)證明:平面平面

(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信搶紅包”自2015年以來(lái)異常火爆,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司租地建倉(cāng)庫(kù),每月土地占用費(fèi)y1與倉(cāng)庫(kù)到車(chē)站的距離成反比,而每月庫(kù)存貨物的運(yùn)費(fèi)y2與到車(chē)站的距離成正比,如果在距離車(chē)站10km處建倉(cāng)庫(kù),這兩項(xiàng)費(fèi)用y1y2分別為2萬(wàn)元和8萬(wàn)元,那么要使這兩項(xiàng)費(fèi)用之和最小,倉(cāng)庫(kù)應(yīng)建在距離車(chē)站(  )

A.4kmB.5kmC.6kmD.7km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018101日起,中華人民共和國(guó)個(gè)人所得稅新規(guī)定,公民月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率

不超過(guò)1500元的部分

3

超過(guò)1500元不超過(guò)4500元的部分

10

超過(guò)4500元不超過(guò)9000元的部分

20

超過(guò)9000元不超過(guò)35000

25

如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?

如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?

寫(xiě)出工資、薪金收入與應(yīng)繳納稅金的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)稱軸為坐標(biāo)軸的橢圓的焦點(diǎn)為,,上.

(1)求橢圓的方程;

(2)設(shè)不過(guò)原點(diǎn)的直線與橢圓交于,兩點(diǎn),且直線,,的斜率依次成等比數(shù)列,則當(dāng)的面積為時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)如圖,在邊長(zhǎng)為的菱形中,,點(diǎn),分別是邊的中點(diǎn),.沿翻折到,連接,得到如圖的五棱錐,且

1)求證:平面;

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為.

1)求函數(shù)的圖象的所有對(duì)稱軸;

2)若函數(shù)內(nèi)有兩個(gè)零點(diǎn)、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列、滿足,,其中,則稱的“生成數(shù)列”.

(1)若數(shù)列的“生成數(shù)列”是,求

(2)若為偶數(shù),且的“生成數(shù)列”是,證明:的“生成數(shù)列”是

(3)若為奇數(shù),且的“生成數(shù)列”是的“生成數(shù)列”是,…,依次將數(shù)列,,…的第項(xiàng)取出,構(gòu)成數(shù)列

探究:數(shù)列是否為等比數(shù)列,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案