【題目】已知方程x2+y2+4x﹣2y﹣4=0,則x2+y2的最大值是(
A.
B.
C.14﹣
D.14+

【答案】D
【解析】解:由方程x2+y2+4x﹣2y﹣4=0得到圓心為(﹣2,1),半徑為3,設(shè)圓上一點(diǎn)為(x,y)
圓心到原點(diǎn)的距離是 =
圓上的點(diǎn)到原點(diǎn)的最大距離是 +3
故x2+y2的最大值是為( +3)2=14+
故選D
【考點(diǎn)精析】通過靈活運(yùn)用圓的一般方程,掌握?qǐng)A的一般方程的特點(diǎn):(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項(xiàng);(2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列{an}是等差數(shù)列,首項(xiàng)a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,兩個(gè)焦點(diǎn)分別為, ,四邊形的面積是四邊形的面積的2倍.

(1)求橢圓的方程;

(2)過橢圓的右焦點(diǎn)且垂直于軸的直線交橢圓兩點(diǎn), 是橢圓上位于直線兩側(cè)的兩點(diǎn).若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程是x+my+2 =0,圓O的方程是x2+y2=r2(r>0).
(1)當(dāng)m取一切實(shí)數(shù)時(shí),直線l與圓O都有公共點(diǎn),求r的取值范圍;
(2)r=5時(shí),求直線l被圓O截得的弦長的取值范圍;
(3)當(dāng)r=1時(shí),設(shè)圓O與x軸相交于P,Q兩點(diǎn),M是圓O上異于P,Q的任意一點(diǎn),直線PM交直線l′:x=3于點(diǎn)P′,直線QM交直線l′于點(diǎn)Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為.點(diǎn)在橢圓上,直線過坐標(biāo)原點(diǎn),若 .

(1)求橢圓的方程;

(2) 設(shè)橢圓在點(diǎn)處的切線記為直線,點(diǎn)上的射影分別為,過的垂線交軸于點(diǎn),試問是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),滿足,實(shí)數(shù)滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(Ⅰ)求角A的大;
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點(diǎn)D.

(1)求證:BD⊥A1C;
(2)若E在棱BC1上,且滿足DE∥面ABC,求三棱錐E﹣ACC1的體積.

查看答案和解析>>

同步練習(xí)冊答案