7.已知命題p:關于x的函數(shù)y=x2-3ax+4在[1,+∞)上是增函數(shù),命題q:函數(shù)y=(2a-1)x為減函數(shù),若“p且q”為真命題,則實數(shù)a的取值范圍是(  )
A.(-∞,$\frac{2}{3}$]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$]D.($\frac{1}{2}$,1)

分析 由p且q為真命題,故p和q均為真命題,我們可根據(jù)函數(shù)的性質,分別計算出p為真命題時,參數(shù)a的取值范圍及分別計算出q為真命題時,參數(shù)a的取值范圍,求其交集即可.

解答 解:命題p:關于x的函數(shù)y=x2-3ax+4在[1,+∞)上是增函數(shù),即 $\frac{3a}{2}$≤1,a≤$\frac{2}{3}$.
命題q:關于x的函數(shù)y=(2a-1)x在R上為減函數(shù),即 0<2a-1<1,$\frac{1}{2}$<a<1,
若p且q為真命題,則有a≤$\frac{2}{3}$,且 $\frac{1}{2}$<a<1,
∴$\frac{1}{2}$<a≤$\frac{2}{3}$,
即a的取值范圍是($\frac{1}{2}$,$\frac{2}{3}$],
故選:C.

點評 本題主要考查指數(shù)函數(shù)的單調性和特殊點,二次函數(shù)的性質,復合命題的真假,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.在西非肆虐的“埃博拉病毒”的傳播速度很快,這已經成為全球性的威脅.為了考察某種埃博拉病毒疫苗的效果,現(xiàn)隨機抽取100只小鼠進行試驗,得到如下列聯(lián)表:
感染未感染總計
服用104050
未服用203050
總計3070100
附表:
P(K2≥k)0.100.050.025
k2.763.8415.024
參照附表,下列結論正確的是(  )
A.在犯錯誤的概率不超5%過的前提下,認為“小動物是否被感染與有沒有服用疫苗有關”
B.在犯錯誤的概率不超5%過的前提下,認為“小動物是否被感染與有沒有服用疫苗無關”
C.有97.5%的把握認為“小動物是否被感染與有沒有服用疫苗有關”
D.有97.5%的把握認為“小動物是否被感染與有沒有服用疫苗無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知$f(x)=\frac{a•{4}^{x}-{2}^{x+1}-a+1}{{2}^{x}}(a∈R)$,如果存在x1,x2∈[-1,1]使得$|{f({x_1})-f({x_2})}|≥\frac{a+1}{2}$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},則 A∩B等于( 。
A.{x|-3<x<0}B.{x|-3<x<-1}C.{x|x<-1}D.{x|-1≤x<0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2cosA-1)sinB+2cosA=1.
(1)求A的大小;
(2)若5b2=a2+2c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1內有一點P(1,1).
(1)求經過P并且以P為中點的弦所在直線方程;
(2)如果直線l:x=my+4與橢圓E相交于A、B兩點,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列命題中不正確的是( 。
A.logab•logbc•logca=1(a,b,c均為不等于1的正數(shù))
B.若xlog34=1,則${4^x}+{4^{-x}}=\frac{10}{3}$
C.函數(shù)f(x)=lnx滿足f(a+b)=f(a)•f(b)(a,b>0)
D.函數(shù)f(x)=lnx滿足f(a•b)=f(a)+f(b)(a,b>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求函數(shù)y=$\frac{\sqrt{-2{x}^{2}+x+10}}{|x|-2}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.解不等式組:$\left\{\begin{array}{l}{2(x-6)>3-x}\\{\frac{2x-1}{3}-\frac{5x+1}{2}≤1}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案