分析 (1)設(shè)出C(x1,y1),D(x2,y2),代入橢圓方程,兩式相減,再由中點(diǎn)坐標(biāo)公式和斜率公式,可得直線的斜率,進(jìn)而得到所求直線方程;
(2)設(shè)直線l:x=my+4與橢圓E相交于A(x3,y3),B(x4,y4)兩點(diǎn),代入橢圓方程,運(yùn)用韋達(dá)定理和平板電視對(duì)于0,再由斜率向量的數(shù)量積的坐標(biāo)表示,化簡(jiǎn)整理,即可得到所求范圍.
解答 解:(1)設(shè)以P為中點(diǎn)的弦的直線與橢圓相交于C(x1,y1),D(x2,y2),
即有$\frac{{{x}_{1}}^{2}}{4}$+$\frac{{{y}_{1}}^{2}}{3}$=1,$\frac{{{x}_{2}}^{2}}{4}$+$\frac{{{y}_{2}}^{2}}{3}$=1,
兩式相減得$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{4}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{3}$=0,
又x1+x2=2,y1+y2=2,
則k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$,
則所求直線方程為y-1=-$\frac{3}{4}$(x-1),即3x+4y-7=0;
(2)設(shè)直線l:x=my+4與橢圓E相交于A(x3,y3),B(x4,y4)兩點(diǎn),
$\left\{\begin{array}{l}{x=my+4}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$可得(4+3m2)y2+24my+36=0,
y3+y4=-$\frac{24m}{4+3{m}^{2}}$,y3y4=$\frac{36}{3{m}^{2}+4}$,
則x3x4=(my3+4)(my4+4)=m2y3y4+4m(y3+y4)+16=$\frac{64-12{m}^{2}}{3{m}^{2}+4}$,
則$\overrightarrow{OA}$•$\overrightarrow{OB}$=x3x4+y3y4=$\frac{100-12{m}^{2}}{3{m}^{2}+4}$=-4+$\frac{116}{3{m}^{2}+4}$,
由△=(24m)2-4(4+3m2)•36>0,可得m2>4,
則$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍是(-4,$\frac{13}{4}$).
點(diǎn)評(píng) 本題考查直線和橢圓的位置關(guān)系,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,同時(shí)考查點(diǎn)差法求直線方程的方法和向量的數(shù)量積的坐標(biāo)表示,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{2}{3}$] | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$] | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com