已知函數(shù)
(1)若曲線在點(diǎn)處的切線與直線平行,求的值;
(2)求證函數(shù)在上為單調(diào)增函數(shù);
(3)設(shè),,且,求證:.
(1); (2)詳見解析; (3)詳見解析
解析試題分析:(1) 先求導(dǎo),由導(dǎo)數(shù)的幾何意義可得在點(diǎn)的導(dǎo)數(shù)即為在此點(diǎn)處切線的斜率。從而可得的值。 (2) 先求導(dǎo),證導(dǎo)數(shù)在 大于等于0恒成立。(3)因為,不妨設(shè),因為在上單調(diào)遞增,所以,所以可將問題轉(zhuǎn)化為,可整理變形為,設(shè),因為且,只需證在上單調(diào)遞增即可。
試題解析:(1) = (),(),
因為曲線在點(diǎn)處的切線與直線平行,
,解得。
(2)=()
所以函數(shù)在上為單調(diào)增函數(shù);
(3)不妨設(shè),則.
要證.
只需證, 即證.
只需證.設(shè).
由(2)知在上是單調(diào)增函數(shù),又,
所以.即 ,即.
所以不等式成立.
考點(diǎn):1導(dǎo)數(shù)的幾何意義;2用導(dǎo)數(shù)研究函數(shù)的性質(zhì);3轉(zhuǎn)化思想。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),曲線經(jīng)過點(diǎn),
且在點(diǎn)處的切線為.
(1)求、的值;
(2)若存在實(shí)數(shù),使得時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域是,其中常數(shù).(注:
(1)若,求的過原點(diǎn)的切線方程.
(2)證明當(dāng)時,對,恒有.
(3)當(dāng)時,求最大實(shí)數(shù),使不等式對恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,求曲線在處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知()
(1)若方程有3個不同的根,求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,是否存在實(shí)數(shù),使得在上恰有兩個極值點(diǎn),且滿足,若存在,求實(shí)數(shù)的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且是函數(shù)的一個極小值點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com