5.關(guān)于x的不等式$\frac{(x-8)^{2}(x+1)}{5-x}$≥0的解集為[-1,5)∪{8}.

分析 根據(jù)分式不等式的解法進行求解即可.

解答 解:當x=8時,不等式等價為0≥0,成立,
當x≠8時,不等式等價為$\frac{x+1}{5-x}≥0$,即$\frac{x+1}{x-5}≤0$,
即-1≤x<5,
綜上不等式的解為-1≤x<5或x=8,
即不等式的解集為[-1,5)∪{8},
故答案為:[-1,5)∪{8}.

點評 本題主要考查不等式的求解,根據(jù)分式不等式的解法是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知一個正方體的各頂點都在同一個球面上,現(xiàn)用一個平面去截這個球和正方體,得到的截面圖形剛好是一個圓及內(nèi)接正三角形.若此正三角形的邊長為a,則這個球的表面積為 ( 。
A.$\frac{3}{4}π{a}^{2}$B.3πa2C.6πa2D.$\frac{3}{2}π{a}^{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.證明:a3ab3bc3c>aa+b+cba+b+cca+b+c(其中a>b>c>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{-2}{x-1}$.
(1)求證:f(x)在[2,3]上是增函數(shù);
(2)求f(x)在[2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.f(x)=$\frac{3}{4}$x2+$\frac{3}{2}$x-$\frac{9}{4}$在[-2m+3,-m+2](m>1)上的最小值是-$\frac{9}{4}$時.求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{5}{2}x-1,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,若|f(x)|≥ax+1,則實數(shù)a的取值范圍是$[-\frac{5}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若函數(shù)f(x)=|x-a|的單調(diào)遞減區(qū)間是(-∞,4],則實數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax+3(a∈R)有兩個極值點x1,x2(x1<x2),則(  )
A.f(x1)≤3,f(x2)<$\frac{10}{3}$B.f(x1)≤3,f(x2)>$\frac{10}{3}$C.f(x1)≥3,f(x2)<$\frac{10}{3}$D.f(x1)≥3,f(x2)>$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.證明:
(1)函數(shù)f(x)=x2+1在(-∞,0)上是減函數(shù);
(2)函數(shù)f(x)=1-$\frac{1}{x}$在(-∞,0)上是增函數(shù).

查看答案和解析>>

同步練習冊答案