如圖,在正方體中,是棱的中點.

(Ⅰ)證明:平面;
(Ⅱ)證明: .

(1)根據(jù)題意,要證明線面平行,一般先證明線線平行,該試題關(guān)鍵是證明EO得到。
(2)對于已知中,那么可知得到線面垂直,,從而證明線線垂直。

解析試題分析:證明:(1)連接AC交BD于O點,連接EO
∵ 正方體中,是棱的中點
EO
又∵
平面
(2)由題易知:



考點:線面平行和線線垂直
點評:主要是考查了運用線面平行的判定定理以及線面垂直的性質(zhì)定理來證明平行和垂直,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在正三角形中,、、分別是、邊上的點,滿足(如圖1).將△沿折起到的位置,使二面角成直二面角,連結(jié)、(如圖2)
    
(Ⅰ)求證:⊥平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:四棱錐中,,,,

(Ⅰ)證明: 平面;
(Ⅱ)在線段上是否存在一點,使直線與平面成角正弦值等于,若存在,指出點位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上動點, F是AB中點, AC =" 1," BC =" 2," AA1 =" 4."

(1) 當E是棱CC1中點時, 求證: CF∥平面AEB1;
(2) 在棱CC1上是否存在點E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的長, 若不存在,
請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在四棱錐中,底面為矩
形,⊥平面,,上的點,若⊥平面

(1)求證:的中點;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是均以為斜邊的等腰直角三角形,,分別為,的中點,的中點,且平面.

(1)證明:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面
,,的中點.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)證明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四邊形中,對角線,,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面
(Ⅱ)求平面與平面夾角的大小.

查看答案和解析>>

同步練習冊答案