如圖,在四邊形中,對角線,,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.

(1)對于面面垂直的證明,主要是通過判定定理來分析得到,注意到平面是解題的關鍵。
(2)

解析試題分析:解:(Ⅰ) 由題知:       
        
    又 平面
平面  平面平面       6分
(Ⅱ) 如圖建立空間直角坐標系



 平面
 平面的一個法向量為  8分
    
設平面的一個法向量為
     
      
 平面與平面的夾角為   12分
考點:空間中的面面位置關系
點評:對于空間中的垂直的證明主要是熟練的運用判定定理和性質定理來證明,同時二面角的求解,一般采用向量法來得到,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,是棱的中點.

(Ⅰ)證明:平面;
(Ⅱ)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點.

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。
(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面AEB,,,,,,,G是BC的中點.

(Ⅰ)求證:;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面體EF-ABCD的體積;
(Ⅱ)求直線BD與平面BCF所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,⊥平面,的中點, 的中點,底面是菱形,對角線,交于點

求證:(1)平面平面
(2)平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點,若EG//面ABCD.

(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

同步練習冊答案