【題目】已知橢圓)的左,右頂點(diǎn)分別為,,長(zhǎng)軸長(zhǎng)為,且經(jīng)過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若為橢圓上異于,的任意一點(diǎn),證明:直線,的斜率的乘積為定值;

3)已知兩條互相垂直的直線都經(jīng)過橢圓的右焦點(diǎn),與橢圓交于,四點(diǎn),求四邊形面積的取值范圍.

【答案】(1)(2)定值,證明見解析;(3)

【解析】

1)由長(zhǎng)軸長(zhǎng)為4可求,再由待定系數(shù)法把點(diǎn)代入橢圓方程即可求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn),,點(diǎn)在橢圓上可得

代入上式化簡(jiǎn)即可.

3)當(dāng),中有一條斜率不存在時(shí),

當(dāng),的斜率都存在時(shí),設(shè)過點(diǎn)的兩條互相垂直的直線,直線,聯(lián)立求出,所以代入整理成關(guān)于的式子,求式子的值域即可.

解:(1)由題意知:,

橢圓的標(biāo)準(zhǔn)方程為.

2)由已知,,設(shè)點(diǎn),則

,又在橢圓上,

,

(定值).

3)當(dāng),中有一條斜率不存在時(shí),易求得

當(dāng),的斜率都存在時(shí),設(shè)過點(diǎn)的兩條互相垂直的直線,直線

顯然,,

.

把上式中的換成得:

則四邊形的面積為

,則,且

,

,

所以四邊形的面積的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20.某學(xué)校在初三上期開始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:

每分鐘跳繩個(gè)數(shù)

得分

17

18

19

20

(1)請(qǐng)估計(jì)學(xué)生的跳繩個(gè)數(shù)的眾數(shù)、中位數(shù)和平均數(shù)(保留整數(shù));

(2)若從跳繩個(gè)數(shù)在、兩組中按分層抽樣的方法抽取9人參加正式測(cè)試,并從中任意選取2人,求兩人得分之和不大于34分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn)

1)求橢圓的方程;

2)設(shè)不過原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯(cuò)誤的是( )

A.可以預(yù)測(cè),當(dāng)時(shí),B.

C.變量之間呈負(fù)相關(guān)關(guān)系D.該回歸直線必過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動(dòng),湖南、廣東、湖北等8省市開始實(shí)行新高考制度,從2018年下學(xué)期的高一年級(jí)學(xué)生開始實(shí)行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,高二某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在時(shí)鐘的表盤上作9個(gè)的扇形,每一個(gè)都覆蓋4個(gè)數(shù)字,每?jī)蓚(gè)覆蓋的數(shù)字不全相同.求證:一定可以找到3個(gè)扇形,恰好覆蓋整個(gè)表盤.舉一個(gè)反例說明,作8個(gè)扇形將不具有上述性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周上有1994個(gè)點(diǎn),將它們?nèi)境扇舾煞N不同的顏色,且每種顏色的點(diǎn)數(shù)各不相同.今在每種顏色的點(diǎn)集中各取一個(gè)點(diǎn),組成頂點(diǎn)顏色各不相同的圓內(nèi)接多邊形為了要使這樣的多邊形個(gè)數(shù)最多,應(yīng)將1994個(gè)點(diǎn)染成多少種不同的顏色?且每種顏色的點(diǎn)集各含有多少個(gè)點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向右平移個(gè)單位后得到函數(shù),則具有性質(zhì)(

A.最大值為1,圖像關(guān)于直線對(duì)稱

B.周期為,圖像關(guān)于點(diǎn)對(duì)稱

C.上單調(diào)遞增,為偶函數(shù)

D.上單調(diào)遞減,為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1-20)和F22,0)的距離之和為

1)求動(dòng)點(diǎn)M軌跡C的方程;

2)設(shè)N02),過點(diǎn)P-1,-2)作直線l,交橢圓C于不同于NA,B兩點(diǎn),直線NA,NB的斜率分別為k1k2,問k1+k2是否為定值?若是的求出這個(gè)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案