【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,分別是橢圓的左右兩個(gè)頂點(diǎn),圓的半徑為,過點(diǎn)作圓的切線,切點(diǎn)為,在軸的上方交橢圓于點(diǎn).

(1)求直線的方程;

(2)的值;

(3)設(shè)為常數(shù),過點(diǎn)作兩條互相垂直的直線,分別交橢圓于點(diǎn),分別交圓于點(diǎn),記三角形和三角的面積分別為.的最大值.

【答案】(1);(2);(3)

【解析】

1)連接,根據(jù)已知條件由,,可得,從而有為等邊三角形,可得出直線傾斜角為,即可求解;

(2)由,橢圓方程化為,由(1)知,求出點(diǎn)坐標(biāo),進(jìn)而求出直線方程,與橢圓方程聯(lián)立,求出點(diǎn)坐標(biāo),即可求解;

3)設(shè)的方程為,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),進(jìn)而求出,同理求出,求出為自變量的目標(biāo)函數(shù),應(yīng)用基本不等式,求出其最大值.

(1)連接,則,且

,所以.

,所以為正三角形,

所以,

所以直線的方程為.

(2)(1)知,由(1)知,

點(diǎn)坐標(biāo)為,

的方程為,

因?yàn)?/span>,即

所以,

故橢圓的方程為

,消去,得

,

所以

(3)不妨設(shè)的方程為,

聯(lián)立方程組

整理得,

在第一象限,得

所以.

代替上面的,得

方程為,

聯(lián)立整理得,

,得,所以

代替上面的,得

所以

因?yàn)?/span>

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,,且對(duì)一切,均有

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和;

3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬不合格的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于不合格的零件;

2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,真命題是(  )

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,、是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集上的偶函數(shù)和奇函數(shù)滿足

1)求的解析式;

2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);

3)設(shè)(其中為常數(shù)),若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分13分如圖,在直角坐標(biāo)系的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合終邊交單位圓于點(diǎn),將角的終邊按逆時(shí)針方向旋轉(zhuǎn),交單位圓于點(diǎn)

1,;

2分別過軸的垂線垂足依次為,的面積為,的面積為,求角的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxa,fx)是fx)的導(dǎo)函數(shù),若關(guān)于x的方程fx0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,是邊長(zhǎng)為的正方形硬紙片(如圖1所示),切去陰影部分所示的四個(gè)全等的等腰三角形,再沿虛線折起,使得,,,四個(gè)點(diǎn)重合于圖2中的點(diǎn),正好形成一個(gè)正四棱錐形狀的包裝盒(如圖2所示),設(shè)正四棱錐的底面邊長(zhǎng)為.

1)若要求包裝盒側(cè)面積不小于,求的取值范圍;

2)若要求包裝盒容積最大,試問應(yīng)取何值?并求出此時(shí)包裝盒的容積.

查看答案和解析>>

同步練習(xí)冊(cè)答案