分析 以A1A2所在直線為x軸,中點A4為坐標(biāo)原點,建立直角坐標(biāo)系,可設(shè)A1(-1,0),A2(1,0),A3(0,$\sqrt{3}$),A4(0,0),A5(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),A6($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),運用向量的坐標(biāo)運算和數(shù)量積的坐標(biāo)表示,計算即可得到所求個數(shù).
解答 解:以A1A2所在直線為x軸,中點A4為坐標(biāo)原點,建立直角坐標(biāo)系,
可設(shè)A1(-1,0),A2(1,0),A3(0,$\sqrt{3}$),
A4(0,0),A5(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),A6($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
可得$\overrightarrow{{A}_{1}{A}_{2}}$=(2,0),
若i=1,則$\overrightarrow{{A}_{1}{A}_{2}}$•$\overrightarrow{{A}_{i}{A}_{j}}$=2(${x}_{{A}_{j}}$+1),
可得4,2,2,1,3;
若i=2,則$\overrightarrow{{A}_{1}{A}_{2}}$•$\overrightarrow{{A}_{i}{A}_{j}}$=2(${x}_{{A}_{j}}$-1),
可得-4,-2,-2,-3,-1;
若i=3,則$\overrightarrow{{A}_{1}{A}_{2}}$•$\overrightarrow{{A}_{i}{A}_{j}}$=2(${x}_{{A}_{j}}$),
可得-2,2,0,-1,1;
若i=4,則$\overrightarrow{{A}_{1}{A}_{2}}$•$\overrightarrow{{A}_{i}{A}_{j}}$=2(${x}_{{A}_{j}}$),
可得-2,2,0,-1,1;
若i=5,則$\overrightarrow{{A}_{1}{A}_{2}}$•$\overrightarrow{{A}_{i}{A}_{j}}$=2(${x}_{{A}_{j}}$+$\frac{1}{2}$),
可得-1,3,1,1,2;
若i=6,則$\overrightarrow{{A}_{1}{A}_{2}}$•$\overrightarrow{{A}_{i}{A}_{j}}$=2(${x}_{{A}_{j}}$-$\frac{1}{2}$),
可得-3,1,-1,-1,-2.
綜上可得取值有±1,±2,±3,±4,0共9個.
點評 本題考查向量的數(shù)量積的坐標(biāo)表示,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,-$\frac{1}{2}$) | B. | (-1,-$\frac{1}{2}$) | C. | (1,-1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{5}$ | C. | $-\frac{1}{5}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com