、在中,
(1)求BC的長。   (2)求的面積

解:(1)      
由正弦定理得    即      
又因 
代人(*)解得
(2)面積公式

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖2,漁船甲位于島嶼的南偏西方向的處,且與島嶼相距12海里,漁船乙以10海里/小時的速度從島嶼出發(fā)沿正北方向航行,若漁船甲同時從處出發(fā)沿北偏東的方向追趕漁船乙,剛好用2小時追上.

(1)求漁船甲的速度;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
中,,
(1)求的值;
(2)設(shè),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖:正在海上A處執(zhí)行任務(wù)的漁政船甲和在B處執(zhí)行任務(wù)的漁政船乙,同時收到同一片海域上一艘漁船丙的求救信號,此時漁船丙在漁政船甲的南偏東40°方向距漁政船甲70km的C處,漁政船乙在漁政船甲的南偏西20°方向的B處,兩艘漁政船協(xié)調(diào)后立即讓漁政船甲向漁船丙所在的位置C處沿直線AC航行前去救援,漁政船乙仍留在B處執(zhí)行任務(wù),漁政船甲航行30km到達D處時,收到新的指令另有重要任務(wù)必須執(zhí)行,于是立即通知在B處執(zhí)行任務(wù)的漁政船乙前去救援漁船丙(漁政船乙沿直線BC航行前去救援漁船丙),此時B、D兩處相距42km,問漁政船乙要航行多少距離才能到達漁船丙所在的位置C處實施營救.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
中,分別是角的對邊,且
(1)求角的大。
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù)對任意實數(shù)、都滿足條件
,且,和②,且,
為正整數(shù))
(Ⅰ)求數(shù)列、的通項公式;
(II)設(shè),求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

((本小題滿分12分)
在△ABC中,ab,c分別為角A,B,C所對的三邊,
(1)求角A;
(2)若BC=2,角B等于x,周長為y,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知,且
(1)若的三內(nèi)角,當取得最小值時,求
(2)當時,將函數(shù)的圖象按向量平移后得到函數(shù)的圖象,求出所有滿足條件的向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題共12分)
中,a,b,c分別為角A,B,C所對的邊,向量
(I)求的值;
(II)若b=4,的面積為的周長。

查看答案和解析>>

同步練習(xí)冊答案