9.若實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$,且3(x-a)+2(y+1)的最大值為5,則a=2.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)即可求得a值.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$作出可行域如圖:

聯(lián)立$\left\{\begin{array}{l}{2x+y-5=0}\\{x-y+2=0}\end{array}\right.$,解得A(1,3).
令z=3(x-a)+2(y+1),化為y=-$\frac{3}{2}x+\frac{3}{2}a-1+\frac{z}{2}$,
由圖可知,當(dāng)直線y=-$\frac{3}{2}x+\frac{3}{2}a-1+\frac{z}{2}$過(guò)A時(shí),直線在y軸上的截距最大,
z有最大值為11-3a=5,即a=2.
故答案為:2.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)的定義域?yàn)镽,且滿足f(2)=2,f′(x)-1>0,則不等式f(x)-x>0的解集為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}的通項(xiàng)為an=(-1)n(4n-3),則數(shù)列{an}的前50項(xiàng)和T50=(  )
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=1,E為BC中點(diǎn).
(1)求證:C1D⊥D1E;
(2)若二面角B1-AE-D1的大小為90°,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列曲線中,在x=1處切線的傾斜角為$\frac{3π}{4}$的是(  )
A.y=x2-$\frac{3}{x}$B.y=xlnxC.y=x3-2x2D.y=ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為F(1,0),左頂點(diǎn)為A,線段AF的中點(diǎn)為B,圓F過(guò)點(diǎn)B,且與C交于D,E,△BDE是等腰直角三角形,則圓F的標(biāo)準(zhǔn)方程是(x-1)2+y2=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在同一周期內(nèi),$x=\frac{π}{9}$時(shí)取得最大值$\frac{1}{2}$,$x=\frac{4}{9}π$時(shí)取得最小值-$\frac{1}{2}$,則該函數(shù)解析式為( 。
A.$y=2sin(\frac{x}{3}-\frac{π}{6})$B.$y=\frac{1}{2}sin(3x+\frac{π}{6})$C.$y=\frac{1}{2}sin(3x-\frac{π}{6})$D.$y=\frac{1}{2}sin(\frac{x}{3}-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ex+$\frac{1}{ax}$(a≠0,x≠0)在x=1處的切線與直線(e-1)x-y+2017=0平行.
(Ⅰ)求a的值并討論函數(shù)y=f(x)在x∈(-∞,0)上的單調(diào)性.
(Ⅱ)若函數(shù)g(x)=f(x)-$\frac{1}{x}$-x+m+1(m為常數(shù))有兩個(gè)零點(diǎn)x1,x2(x1<x2).?求實(shí)數(shù)m的取值范圍;
?求證:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=$\frac{1}{3}$x3-x+c的圖象與x軸恰有兩個(gè)公共點(diǎn),則c=( 。
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案