1.設(shè)$0≤x≤\frac{π}{4}$,則$\sqrt{1-2sinxcosx}$=( 。
A.cosx-sinxB.sinx-cosxC.cosx+sinxD.-cosx-sinx

分析 由條件求得 cosx>sinx,再利用同角三角函數(shù)的基本關(guān)系化簡所給的式子,可得結(jié)果.

解答 解:設(shè)$0≤x≤\frac{π}{4}$,則 cosx>sinx,則$\sqrt{1-2sinxcosx}$=|cosx-sinx|=cosx-sinx,
故選:A.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,判斷cosx>sinx 是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.矩形的長為12.寬為8,與它周長相等的正方形的面積是( 。
A.96B.48C.40D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知下列命題:
①有向線段就是向量,向量就是有向線段;
②如果向量$\vec a$與向量$\vec b$平行,則$\vec a$與$\vec b$的方向相同或相反;
③如果向量$\overrightarrow{AB}$與向量$\overrightarrow{CD}$共線,則A,B,C,D四點共線;
④如果$\overrightarrow a$∥$\vec b$,$\vec b$∥$\overrightarrow c$,那么$\overrightarrow a$∥$\overrightarrow c$;
⑤兩個向量不能比較大小,但是他們的模能比較大。
其中正確的命題為(  )
A.①②④⑤B.②④⑤C.D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計算:($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+lg$\frac{3}{7}$+lg70+$\sqrt{(lg3)^{2}-lg9+1}$=$\frac{43}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且其面積$S=\frac{{{a^2}+{b^2}-{c^2}}}{{4\sqrt{3}}}$,則角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,則數(shù)列{an}的通項公式為an=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,O為直線A0A2015外一點,若A0,A1,A2,A3,A4,A5,…,A2015中任意相鄰兩點的距離相等,設(shè)$\overrightarrow{O{A}_{0}}$=$\overrightarrow{a}$,$\overrightarrow{O{A}_{2015}}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{O{A}_{0}}$+$\overrightarrow{O{A}_{1}}$+…+$\overrightarrow{O{A}_{2015}}$,其結(jié)果為1008($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時:當(dāng)船速不大于每小時30海里/時,船每小時使用的燃料費用和船速成正比;當(dāng)船速不小于每小時30海里/時,船每小時使用的燃料費用和船速的平方成正比;當(dāng)船速為30海里/時,它每小時使用的燃料費用為300元;其余費用(不論船速為多少)都是每小時480元;
(1)試把每小時使用的燃料費用P(元)表示成船速v(海里/時)的函數(shù);
(2)試把船從甲地行駛到乙地所需要的總費用Y表示成船速v的函數(shù);
(3)當(dāng)船速為每小時多少海里時,船從甲地到乙地所需要的總費用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin($\frac{π}{6}$-α)-cosα=$\frac{1}{3}$,則cos(2α+$\frac{π}{3}$)=( 。
A.$\frac{5}{18}$B.-$\frac{5}{18}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊答案