1.下列選項中與函數(shù)y=x是同一函數(shù)的是( 。
A.$y=\root{3}{x^3}$B.$y={(\sqrt{x})^2}$C.$y=\sqrt{x^2}$D.$y=\frac{x^2}{x}$

分析 根據(jù)兩個函數(shù)的定義域相同,對應法則也相同,即可判斷它們是同一函數(shù).

解答 解:對于A,函數(shù)y=$\root{3}{{x}^{3}}$=x(x∈R),與y=x(x∈R)的定義域相同,對應法則也相同,是同一函數(shù);
對于B,函數(shù)y=${(\sqrt{x})}^{2}$=x(x≥0),與y=x(x∈R)的定義域不同,不是同一函數(shù);
對于C,函數(shù)y=$\sqrt{{x}^{2}}$=|x|(x∈R),與y=x(x∈R)的對應法則不同,不是同一函數(shù);
對于D,函數(shù)y=$\frac{{x}^{2}}{x}$=x(x≠0),與y=x(x∈R)的定義域不同,不是同一函數(shù).
故選:A.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{5}{3}$,3an+1-2an=2n+5.
(1)求證:數(shù)列{an-2n+1}為等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知$\overrightarrow{e_1},\overrightarrow{e_2}$為單位向量,且$\overrightarrow{e_1}$與$\overrightarrow{e_1}+2\overrightarrow{e_2}$垂直,則$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知定義在R上的偶函數(shù)f(x)在(-∞,0]單調(diào)遞減,且f(-$\frac{1}{3}$)=0,則滿足f(log${\;}_{\frac{1}{8}}$x)+f(log8x)>0的x的取值范圍是( 。
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{8}$)∪($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.目前,廣安市出租車的計價標準是:路程2km以內(nèi)(含2km)起步價8元收取,超過2km的路程按1.9km收取,但超過10km的路程需要加收50%的返空費(即單價為1.9×(1+50%)=2.85元/km)(說明:現(xiàn)實中要計算等待時間,且最終付費取整數(shù),本題在計算時都不予考慮)
(1)若0<x≤20,將乘客搭乘一次出租車的費用用f(x)(單位:元)表示行程x(單位:km)的分段函數(shù)
(2)某乘客行程為16km,他準備先乘一輛出租車行駛8km,然后再換乘另一輛出租車完成余下行程,請問:他是否比只乘一輛出租車完成全部行程更省錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.兩平行直線x+2y-1=0與2x+4y+3=0間的距離為(  )
A.$\frac{2}{5}\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{4}{5}\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.下列四個結(jié)論:
①函數(shù)$y={0.7^{\frac{1}{x}}}$的值域是(0,+∞);
②直線2x+ay-1=0與直線(a-1)x-ay-1=0平行,則a=-1;
③過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號為④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.擲一枚均勻的正六面體骰子,設(shè)A表示事件“出現(xiàn)3點”,B表示事件“出現(xiàn)偶數(shù)點”,則P(A∪B)等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在平面直角坐標系xOy中,圓O:x2+y2=r2(r>0)與圓M:(x-3)2+(y+4)2=4相交,則r的取值范圍是3<r<7.

查看答案和解析>>

同步練習冊答案