2.在△ABC中,已知a=7,b=8,c=13,則角C的大小為$\frac{2π}{3}$.

分析 由題意和余弦定理可得cocC,由三角形內(nèi)角的范圍可得.

解答 解:∵在△ABC中a=7,b=8,c=13,
∴由余弦定理可得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$
=$\frac{{7}^{2}+{8}^{2}-1{3}^{2}}{2×7×8}$=-$\frac{1}{2}$,
∵C∈(0,π),∴C=$\frac{2π}{3}$
故答案為:$\frac{2π}{3}$

點評 本題考查余弦定理,涉及三角函數(shù)值和角的對應(yīng)關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如果ξ是一個離散型隨機變量,那么下列命題中,假命題是( 。
A.ξ取每個可能值的概率是非負(fù)實數(shù)
B.ξ取所有可能值概率之和為1
C.ξ取某2個可能值的概率等于分別取其中每個值的概率之和
D.ξ取某2個可能值的概率大于分別取其中每個值的概率之和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(a)>1,則a的取值范圍是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓O:x2+y2=4.點M(4,0),過原點的直線(不與x軸重合)與圓O交于A,B兩點,則△ABM的外接圓的面積的最小值為$\frac{25π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a>0,函數(shù)f(x)=x-$\frac{a}{x}$(x∈[1,2])的圖象的兩個端點分別為A、B,設(shè)M是函數(shù)f(x)圖象上任意一點,過M作垂直于x軸的直線l,且l與線段AB交于點N,若|MN|≤1恒成立,則a的最大值是6+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{3}{5}$sinx+sinβcosx+1(β位常數(shù)),且f(0)=$\frac{9}{5}$.
(1)求sinβ與cos2β的值
(2)求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,若c2=bccosA+cacosB+abcosC,則△ABC的形狀是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如果復(fù)數(shù)z=1+ai滿足條件|z|<2,那么實數(shù)a的取值范圍是$(-\sqrt{3},\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某課外興趣小組為了了解所在地區(qū)老年人的健康狀況,分別作了四種不同的抽樣調(diào)查,你認(rèn)為抽樣比較合理的是( 。
A.在公園調(diào)查了1000名老年人的健康狀況
B.在醫(yī)院調(diào)查了1000名老年人的健康狀況
C.調(diào)查了10名老年鄰居的健康狀況
D.利用派出所的戶籍網(wǎng)隨機調(diào)查了該地區(qū)10%的老年人的健康狀況

查看答案和解析>>

同步練習(xí)冊答案