如圖,在矩形ABCD中,AB>·AD,E為AD的中點(diǎn),連結(jié)EC,作EF⊥EC,且EF交AB于F,連結(jié)FC.設(shè)=k,是否存在實(shí)數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.
解:假設(shè)存在實(shí)數(shù)k的值,滿足題設(shè).
①先證明△AEF∽△DCE∽△ECF.
因?yàn)镋F⊥EC,
所以∠AEF=90°-∠DEC=∠DCE.
而∠A=∠D=90°,故△AEF∽△DCE.
故得=.又DE=EA,所以=.
又∠CEF=∠EAF=90°,
所以△AEF∽△ECF.
②再證明可以取到實(shí)數(shù)k的值,使△AEF∽△BCF,
由于∠AFE+∠BFC≠90°,故不可能有∠AFE=∠BFC,
因此要使△AEF∽△BCF,應(yīng)有∠AFE=∠BFC,
此時(shí),有=,又AE=BC,故得AF=BF=AB.
由△AEF∽△DCE,可知=,
因此,=AB2,
所以=,求得k==.
可以驗(yàn)證,當(dāng)k=時(shí),這四個(gè)三角形都是有一個(gè)銳角等于60°的直角三角形,故它們都相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在線性變換下,直線x+y=k(k為常數(shù))上的所有點(diǎn)都變?yōu)橐粋(gè)點(diǎn),求此點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)為原點(diǎn)、極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),求直線l被曲線C截得的線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,四邊形ABCD中,DF⊥AB,垂足為F,DF=3,AF=2FB=2,延長(zhǎng)FB到E,使BE=FB.連結(jié)BD、EC,若BD∥EC,求△BCD和四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP∶PF=1∶2,AD=7 cm,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖, 弦AB與CD相交于⊙O內(nèi)一點(diǎn)E,過(guò)E作BC的平行線與AD的延長(zhǎng)線相交于點(diǎn)P.已知PD=2DA=2, 求PE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{2n-1·an}的前n項(xiàng)和Sn=1-.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com