在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點(diǎn)P(x1,y1),Q(x2,y2)之間的“折線距離”.在這個(gè)定義下,給出下列命題:
①到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個(gè)正方形;
②到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個(gè)圓;
③到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”相等的點(diǎn)的軌跡方程是x=0;
④到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”差的絕對(duì)值為1的點(diǎn)的集合是兩條平行線.
其中正確的命題有(  )
A、1個(gè)
B、2 個(gè)
C、3 個(gè)
D、4個(gè)
考點(diǎn):命題的真假判斷與應(yīng)用
專題:新定義
分析:先根據(jù)折線距離的定義分別表示出所求的集合,然后根據(jù)集合中絕對(duì)值的性質(zhì)進(jìn)行判定即可.
解答: 解:到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合{(x,y)||x|+|y|=1},是一個(gè)正方形,故①正確,②錯(cuò)誤;
到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”相等點(diǎn)的集合是{(x,y)||x+1|+|y|=|x-1|+|y|},
由|x+1|=|x-1|,解得x=0,
∴到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”相等的點(diǎn)的軌跡方程是x=0,即③正確;
到M(-1,0),N(1,0)兩點(diǎn)的“折線距離”差的絕對(duì)值為1的點(diǎn)的集合{(x,y)||x+1|+|y|-|x-1|-|y|=±1}={(x,y)||x+1|-|x-1|=±1},
集合是兩條平行線,故④正確;
綜上知,正確的命題為①③④,共3個(gè).
故選:C.
點(diǎn)評(píng):本題主要考查了“折線距離”的定義,考查分析問(wèn)題、解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示
用煤(噸) 用電(千瓦) 產(chǎn)值(萬(wàn)元)
甲產(chǎn)品 5 10 4
乙產(chǎn)品 6 20 6
但該廠每天可用的煤、電有限,每天供煤至多50噸,供電至多140千瓦,該廠最大日產(chǎn)值為
 
萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、若p∧q為假,則p、q均為假.
B、若p:?x∈R,x2+x+1>0,則¬p:?x∈R,x2+x+1≤0.
C、若a+b=1,則
1
a
+
1
b
的最小值為4.
D、線性相關(guān)系數(shù)|r|越接近1,表示兩變量相關(guān)性越強(qiáng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題為真命題的是( 。
①如果命題“?p”與命題“p∨q”都是真命題,那么命題q一定是真命題;
②“若x2+y2=0,則x,y全為0”的否命題;
③“若x∈A∩B,則x∈A∪B”的逆命題;
④若?p是q的必要條件,則p是?q的充分條件;
⑤到兩定點(diǎn)F1(-2,0),F(xiàn)2(2,0)距離之和為定值2的動(dòng)點(diǎn)軌跡是橢圓.
A、①②⑤B、①③④
C、②③D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下命題:
|
a
|+|
b
|=|
a
+
b
|
a
,
b
共線的充要條件;
②空間任意一點(diǎn)O與不共線三點(diǎn)A,B,C滿足
OP
=2
OA
+3
OB
-4
OC
,則P,A,B,C四點(diǎn)共面;
③若兩平面的法向量不垂直,則這兩個(gè)平面一定不垂直.
其中正確的命題是( 。
A、②B、①②C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所不的程序框圖,則輸出的x的值是( 。
A、3B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙丙丁4人玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他3人,若球首先從甲傳出,經(jīng)過(guò)3次傳球.
(1)求球恰好回到甲手中的概率;
(2)設(shè)乙獲球(獲得其他游戲者傳的球)的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足
Sn
n
=3n-2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
m
20
對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=-x2-4,f(x)為二次函數(shù),滿足f(x)+g(x)+f(-x)+g(-x)=0,且f(x)在[-1,2]上的最大值為7,則f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案