14.直線7x+3y-21=0上到兩坐標(biāo)軸距離相等的點(diǎn)的個(gè)數(shù)為( 。
A.3B.2C.1D.0

分析 到兩坐標(biāo)軸距離相等,說明此點(diǎn)的橫縱坐標(biāo)的絕對(duì)值相等,那么x=y,或x=-y.據(jù)此作答.

解答 解:設(shè)A(x,y).
∵點(diǎn)A為直線7x+3y-21=0上的一點(diǎn),
又∵點(diǎn)A到兩坐標(biāo)軸距離相等,
∴x=y或x=-y.
當(dāng)x=y時(shí),解得7x+3x-21=0,解得x=$\frac{21}{10}$,y=$\frac{21}{10}$,
當(dāng)x=-y時(shí),7x-3x-21=0,解得x=$\frac{21}{4}$,y=-$\frac{21}{4}$,
直線7x+3y-21=0上到兩坐標(biāo)軸距離相等的點(diǎn)的個(gè)數(shù)為:2.
故選:B.

點(diǎn)評(píng) 本題考查的是一次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知某點(diǎn)到兩坐標(biāo)軸的距離相等時(shí),那么此點(diǎn)的橫縱坐標(biāo)相等或互為相反數(shù)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知不等式組$\left\{\begin{array}{l}{2x-y+3≥0}\\{x≤1}\\{x-y≤0}\end{array}\right.$,表示的平面區(qū)域?yàn)镈,若函數(shù)y=|x|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的最小值為( 。
A.-6B.-4C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若a=$\int_0^π$sinxdx,則(x-$\frac{a}{x}}$)8的展開式中的常數(shù)項(xiàng)為1120(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x∈[0,2π],且sinx=-$\frac{1}{2}$,則x=$\frac{11π}{6}$或$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若點(diǎn)(2,-k)到直線5x+12y+6=0的距離是4,則k的值是-3或$\frac{17}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求值:
(1)sin[2arcsin(-$\frac{3}{5}$)]
(2)tan($\frac{1}{2}$arccos$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(2cosβ,2sinβ),0<α<β<π,且|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$.
(1)求β-α的值;
(2)若cosα=$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知($\frac{1}{2}$+2x)n的展開式中前3項(xiàng)的二項(xiàng)式系數(shù)之和等于37,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={-1,0,1,2},B={x|x2-x-2≤0},則x∈A是x∈B的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案