若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍為( )
A.a<-1 B.a>1
C.-1<a<1 D.0≤a<1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閇-1,1].
(1)求函數(shù)g(x)的解析式;
(2)判斷g(x)的單調(diào)性;
(3)若方程g(x)=m有解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如果函數(shù)f(x)=x2+bx+c對(duì)任意的實(shí)數(shù)x都有f(+x)=f(-x),那么( )
A.f(-2)<f(0)<f(2) B.f(0)<f(-2)<f(2)
C.f(2)<f(0)<f(-2) D.f(0)<f(2)<f(-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8,設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.16 B.-16
C.a2-2a-16 D.a2+2a-16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x+m(m為常數(shù)),則函數(shù)f(x)的大致圖象為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若a<b<c,則函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的兩個(gè)零點(diǎn)分別位于區(qū)間( )
A.(a,b)和(b,c)內(nèi)
B.(-∞,a)和(a,b)內(nèi)
C.(b,c)和(c,+∞)內(nèi)
D.(-∞,a)和(c,+∞)內(nèi)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)=2x|log0.5x|-1的零點(diǎn)個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
為了保證信息安全,傳輸必須使用加密方式,有一種方式其加密、解密原理如下:
已知加密為y=ax-2(x為明文,y為密文),如果明文“3”通過加密后得到密文為“6”,再發(fā)送,接受方通過解密得到明文“3”,若接受方接到密文為“14”,則原發(fā)的明文是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com