如果函數(shù)y=x4-8x2+c在[-1,3]上的最小值是-14,求y的最大值.
考點:函數(shù)的最值及其幾何意義
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的最小值為-14,求出c的值即可得到結(jié)論.
解答: 解:由y′=4x3-16x=4x(x2-4)=0,
解得x=0,-2,2,
分別求出f(-2)=c-16,f(2)=c-16,
x-1(-1,0)0(0,2)2(2,3)3
y′+0-0+
y極大極小
則最小值為c-16=-14,c=2,
則函數(shù)f(x)=x4-8x2+2,
則f(0)=2,f(-1)=(-1)4-8(-1)2+2=1-8+2=-5,
f(3)=34-8×32+2=11,
故函數(shù)的最大值為11.
點評:本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過比較函數(shù)在(a,b)內(nèi)所有極值與端點函數(shù)f(a),f(b) 比較而得到的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P(x0,y0)在直線Ax+By+C=0上,求證:這條直線的方程可以寫成A(x-x0)+B(y-y0)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈(0,
π
2
)時,試比較tanx與x+
x3
3
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意x,y∈R,函數(shù)f(x)都滿足f(x+y)=f(x)+f(y)+2恒成立,則f(5)+f(-5)等于( 。
A、0B、-4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)f(x)=2x-b,冪函數(shù)g(x)=xa,且知函數(shù)f(x)•g(x)的圖象過(1,2),函數(shù)
g(x)
f(x)
的圖象過(
2
,1),若函數(shù)h(x)=g(x)+f(x).
(1)求函數(shù)h(x)的解析式;
(2)若x∈[-3,-
3
],求y=
h(x)
x2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
a-1
b0
的一個特征值λ=2,其對應(yīng)的一個特征向量
a
=
1
1

(Ⅰ)試求矩陣A-1;
(Ⅱ)求曲線2x-y+1=0經(jīng)過A-1所對應(yīng)的變換作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1.
(1)求二面角A-DF-B的大;
(2)試在線段AC上確定一點P,使PF與BC所成角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

心理學(xué)家發(fā)現(xiàn),學(xué)生對概念的接受能力y與提出概念所用的時間x(單位:分)之間滿足函數(shù)關(guān)系式y(tǒng)=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越強.
(1)x在什么范圍內(nèi),學(xué)生的接受能力逐步增強?x在什么范圍內(nèi),學(xué)生的接受能力逐步降低?
(2)第10分鐘時,學(xué)生的接受能力是多少?
(3)第幾分鐘時,學(xué)生的接受能力最強?

查看答案和解析>>

同步練習(xí)冊答案