18.已知函數(shù)f(x)=ex(x-b)(b∈R).若存在$x∈[{\frac{1}{2},2}]$,使得f(x)+xf'(x)>0,則實(shí)數(shù)b的取值范圍是(-∞,$\frac{8}{3}$).

分析 求出f′(x),分離參數(shù)b,根據(jù)函數(shù)的單調(diào)性求出b的范圍即可.

解答 解:∵f(x)=ex(x-b),
∴f′(x)=ex(x-b+1),
若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
則若存在x∈[$\frac{1}{2}$,2],使得ex(x-b)+xex(x-b+1)>0,
即存在x∈[$\frac{1}{2}$,2],使得b<$\frac{{x}^{2}+2x}{x+1}$成立,
令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],
則g′(x)=$\frac{{x}^{2}+2x+2}{{(x+1)}^{2}}$>0,
g(x)在[$\frac{1}{2}$,2]遞增,
∴g(x)最大值=g(2)=$\frac{8}{3}$,
故b<$\frac{8}{3}$,
故答案為:(-∞,$\frac{8}{3}$).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l過定點(diǎn)P(1,1),且傾斜角為$\frac{3π}{4}$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ-\frac{3}{ρ}=2cosθ$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)P為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上且在第一象限內(nèi)的點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),PF2⊥F1F2,x軸上有一點(diǎn)A且AP⊥PF1,E是AP的中點(diǎn),線段EF1與PF2交于點(diǎn)M.若|PM|=2|MF2|,則雙曲線的離心率是( 。
A.1$+\sqrt{2}$B.2$+\sqrt{2}$C.3$+\sqrt{2}$D.4$+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z=$\frac{(1+i)^{3}}{(1-i)^{2}}$(其中i為虛數(shù)單位),則z的虛部為( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)$\overrightarrow{a}$、$\overrightarrow$分別是兩條異面直線l1、l2的方向向量,向量$\overrightarrow{a}$、$\overrightarrow$的夾角的取值范圍為A.l1、l2所成的角的取值范圍為B,則“a∈A”是“a∈B”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),對稱軸為坐標(biāo)軸,直線l過拋物線C的焦點(diǎn),且與拋物線的對稱軸垂直,l與C交于A,B兩點(diǎn),且|AB|=8,M為拋物線C準(zhǔn)線上一點(diǎn),則△ABM的面積為( 。
A.16B.18C.24D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)=e-|x|,記a=f(log0.53),b=f(log25),c=f(0),則a,b,c的大小關(guān)系為( 。
A.b<a<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個(gè)三角形,邊長分別為a,b,c,三角形的面積S可由公式$S=\sqrt{p(p-a)(p-b)(p-c)}$求得,其中p為三角形周長的一半,這個(gè)公式也被稱為海倫-秦九韶公式,現(xiàn)有一個(gè)三角形的邊長滿足a+b=12,c=8,則此三角形面積的最大值為( 。
A.$4\sqrt{5}$B.$8\sqrt{5}$C.$4\sqrt{15}$D.$8\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\sqrt{3}$,1),則∠ABC=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案