4.如圖,△ABC的3個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是$\frac{13}{4}π$平方單位.

分析 在直角△ABC中,利用勾股定理求出線段AB的長度,代入扇形面積公式,可得線段AB掃過的圖形面積.

解答 解:直角△ABC中,AC=3,BC=2,
故AB=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
線段AB掃過的圖形是一個以AB為半徑r,圓心角為:α=$\frac{π}{2}$的扇形,
故面積S=$\frac{1}{2}{αr}^{2}$=$\frac{13}{4}π$,
故答案為:$\frac{13}{4}π$.

點評 本題考查的知識點是勾股定理和扇形面積公式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法正確的是( 。
A.f(x)=lnx2與g(x)=2lnx是同一個函數(shù)B.$cos\frac{π}{12}=\frac{{\sqrt{6}-\sqrt{2}}}{4}$
C.△ABC中,$cos(A+B)+sin\frac{C}{2}$的最小值是-1D.因為$\sqrt{2}=2cos\frac{π}{4}$,所以$\sqrt{2+\sqrt{2}}=2cos\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x3-3x在點(1,-2)處的切線斜率是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.確定結(jié)論“X與Y有關(guān)系”的可信度為99.5%時,則隨即變量k2的觀測值k必須( 。
A.大于10.828B.大于7.879C.小于6.635D.大于2.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)O為△ABC的外心(三角形外接圓的心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|$\overrightarrow{AB}$|2,則$\frac{AC}{AB}$=( 。
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某教師一天上3個班級的課,每班一節(jié),如果一天共9節(jié)課,上午5節(jié)、下午4節(jié),并且教師不能連上3節(jié)課(第5和第6節(jié)不算連上),那么這位教師一天的課的所有排法有( 。
A.474種B.77種C.464種D.79種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$),ω>0.
(1)若f(x)在(0,$\frac{π}{3}$)上單調(diào)遞增,求ω的最大值;
(2)若f(x+θ),θ∈(0,π)是周期為2π的偶函數(shù),求ω及θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為( 。
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)a=$\frac{1}{2}$時,令h(x)=f(x)-3lnx+x-$\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若函數(shù)f(x)≤x-1對?x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案