5.n∈N*,A${\;}_{n}^{3}$+A${\;}_{4}^{n+1}$的值為30.

分析 由題意得n=3,代入排列數(shù)公式,可得答案.

解答 解:由題意得:n≥3,且n+1≤4,即n=3,
∴A${\;}_{n}^{3}$+A${\;}_{4}^{n+1}$=${A}_{3}^{3}$+${A}_{4}^{4}$=6+24=30,
故答案為:30.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是排列及排列數(shù)公式,根據(jù)已知得到n=3是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{4-x}{4x-2}$,在區(qū)間(0,$\frac{1}{2}$)∪($\frac{1}{2}$,2)上函數(shù)f(x)≥1的概率為( 。
A.$\frac{1}{4}$B.$\frac{7}{20}$C.$\frac{9}{20}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}3x-y-2≤0\\ 2x-y≥0\\ y≥0\end{array}\right.$則目標(biāo)函數(shù)z=2x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將函數(shù)y=$\sqrt{2}$cos2x的圖象向右平移$\frac{π}{24}$個(gè)單位后,與函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)的圖象重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(sin2α-$\frac{2\sqrt{5}}{3}$,2cosα),$\overrightarrow$=(1,1-sinα),α∈(0,π),且$\overrightarrow{a}$$⊥\overrightarrow$,則tan($α-\frac{π}{4}$)=( 。
A.9-4$\sqrt{5}$B.4$\sqrt{5}$-9C.5$\sqrt{2}$-9D.9+4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,矩形ACEF所在的平面與Rt△ABC所在的平面垂直,D是AF的中點(diǎn),且AC=BC=AD=$\frac{1}{2}$CE.
(1)證明:DE⊥BC;
(2)求多面體BCDFE與四面體BCDF的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,an=3n+2an-1(n≥2,n∈N*),求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實(shí)數(shù)x,y滿足x2+y2-2x+2$\sqrt{3}$y+3=0,則x-$\sqrt{3}$y的取值范圍是( 。
A.[2,+∞)B.(2,6)C.[2,6]D.[-4,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)向量$\overrightarrow{AB}$=(3,4),$\overrightarrow{BC}$=(-2,-1),則cos∠BAC等于( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案