12.計算:
(1)[($\frac{1}{2}$)-3-8${\;}^{\frac{2}{3}}$]÷($\root{4}{16}$-20);    
(2)log225•log38•log59.

分析 (1)化負指數(shù)為正指數(shù),化0指數(shù)冪為1,然后利用有理指數(shù)冪的運算性質(zhì)得答案;
(2)直接利用對數(shù)的運算性質(zhì)化簡求值.

解答 解:(1)[($\frac{1}{2}$)-3-8${\;}^{\frac{2}{3}}$]÷($\root{4}{16}$-20
=(8-4)÷(2-1)=4÷1=4;    
(2)log225•log38•log59
=$\frac{lg25}{lg2}•\frac{lg8}{lg3}•\frac{lg9}{lg5}$=$\frac{2lg5}{lg2}•\frac{3lg2}{lg3}•\frac{2lg3}{lg5}=12$.

點評 本題考查有理指數(shù)冪的運算性質(zhì),考查了對數(shù)的運算性質(zhì),是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.回文數(shù)是指從左到右讀與從右到左都是一樣的正整數(shù).如121,94249是回文數(shù),則4位回文數(shù)有90個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.定義在R上的函數(shù)f(x)滿足f(1)=1,且對任意x∈R都有f$′(x)<\frac{1}{2}$,則不等式f(x3)$>\frac{{x}^{3}+1}{2}$的解集為(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.長為a的正六邊形ABCDEF在平面α內(nèi),過A點作PA⊥α,PA=a,則P到CD的距離為2a,P到BC的距離為$\frac{\sqrt{7}}{2}$a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=(m2+4m-5)x2+4(1-m)x+3.
(1)若對任意實數(shù)x,函數(shù)值恒大于零,求實數(shù)m的取值范圍;
(2)若函數(shù)有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)的導函數(shù)為f′(x).滿足xf′(x)+2f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{2e}$,則f(π)、f(2sin$\frac{5π}{7}$)、f(4)的大小關系為( 。
A.f(2sin$\frac{5π}{7}$)<f(π)<f(4)B.f(4)<f(π)<f(2sin$\frac{5π}{7}$)C.f(π)<f(2sin$\frac{5π}{7}$)<f(4)D.f(4)<f(2sin$\frac{5π}{7}$)<f(π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知圓O:x2+y2=13,過點(1,2)作直線交圓O于A,B兩點,則AB的最小值為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.集合M={x|x=$\frac{kπ}{2}+\frac{π}{4}$,k∈Z},N={x|x=$\frac{kπ}{4}+\frac{π}{2}$,k∈Z},則( 。
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.當實數(shù)k為何值時,圓C1:x2+y2+4x-6y+12=0和圓C2:x2+y2-2x-14y+k=0分別相交、相切、相離?

查看答案和解析>>

同步練習冊答案