3.已知函數(shù)f(x)=ax3+c,且f′(1)=6,函數(shù)在[1,2]上的最大值為20,則c的值為( 。
A.1B.4C.-1D.0

分析 求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)值求出a,判斷函數(shù)的單調(diào)性,然后求解函數(shù)的最大值,推出c即可.

解答 解:∵f′(x)=3ax2,∴f′(1)=3a=6,∴a=2.當(dāng)x∈[1,2]時(shí),f′(x)=6x2>0,即f(x)在[1,2]上是增函數(shù),∴f(x)max=f(2)=2×23+c=20,∴c=4.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面積;
(2)設(shè)向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$sinα-2cosα=\frac{{\sqrt{10}}}{2}$,則tan2α=( 。
A.$\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知點(diǎn)F(-2,0)在以原點(diǎn)為圓心的圓O內(nèi),且過(guò)F的最短的弦長(zhǎng)為2.
(1)求圓O的方程;
(2)過(guò)F任作一條與兩坐標(biāo)標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知f(x)的定義域是(0,+∞),f'(x)是f(x)的導(dǎo)數(shù),且滿足f(x)>f'(x),則不等式ex+2•f(x2-x)>ex2•f(2)的解集是(-1,0)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若拋物線y2=4x上的點(diǎn)M到焦點(diǎn)的距離為10,則M到y(tǒng)軸的距離是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列命題中錯(cuò)誤的是( 。
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
D.如果平面α⊥平面β,α∩β=l,過(guò)α內(nèi)任意一點(diǎn)作l的垂線m,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“z1與z2互為共軛復(fù)數(shù)”是“z1z2∈R”的( 。l件.
A.充分不必要B.必要不充分
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若關(guān)于x的方程x2-x-(m+1)=0在[-1,1]上有解,則m的取值范圍是[-$\frac{5}{4}$,1].(結(jié)果寫(xiě)成區(qū)間形式)

查看答案和解析>>

同步練習(xí)冊(cè)答案