函數(shù)
(1)若,證明;
(2)若不等式時(shí)和都恒成立,求實(shí)數(shù)的取值范圍。
(1)構(gòu)造函數(shù)g(x)="f(x)-" ,利用導(dǎo)數(shù)來判定單調(diào)性得到證明。
(2)或
【解析】
試題分析:(1)令g(x)="f(x)-" ="ln(x+1)-" ,
則g′(x)= -∵x>0,
∴g′(x)>0,∴g(x)在(0,+∞)上是增函數(shù).
故g(x)>g(0)=0,即f(x)>
(2)原不等式等價(jià)于x2-f(x2)≤m2-2bm-3.
令h(x)= x2-f(x2)=x2-ln(1+x2),
則h′(x)=x-=
令h′(x)=0,得x=0,x=1,x=-1.
∴當(dāng)x∈[-1,1]時(shí),h(x)max=0,
∴m2-2bm-3≥0.令Q(b)=-2mb+m2-3,
則Q(1)=m2-2m-3≥0, Q(-1)=m2+2m-3≥0
解得m≤-3或m≥3.
考點(diǎn):函數(shù)的導(dǎo)數(shù)
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)和函數(shù)思想的應(yīng)用,本題解題的關(guān)鍵是構(gòu)造新函數(shù),對(duì)于新函數(shù)進(jìn)行求導(dǎo)求最值,再利用函數(shù)的思想來解題,這種題目可以出現(xiàn)在高考卷中
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)我們把叫做冪函數(shù)。冪函數(shù)的一個(gè)性質(zhì)是,當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù)。 設(shè)冪函數(shù)
(1)若,證明:當(dāng)時(shí),有;
(2)若,對(duì)任意的,證明;
(3)在(2)的條件下,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知二次函數(shù).
(1)若,試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)是否存在,使同時(shí)滿足以下條件
①對(duì)任意,且;
②對(duì)任意,都有。若存在,求出的值,若不存在,請(qǐng)說明理由。
(3)若對(duì)任意且,,試證明存在,
使成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:遼寧省沈陽二中2010-2011學(xué)年上學(xué)期高三階段測試二數(shù)學(xué)(理) 題型:解答題
函數(shù)
(1)若,證明;
(2)若不等式時(shí)和都恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com