分析 (1)由條件利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,由f(0)=2,求得a,再由f($\frac{π}{3}$)=$\frac{1}{2}$+$\frac{{\sqrt{3}}}{2}$,求得b的值.
(2)由(1)可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,再利用正弦函數(shù)的值域求得f(x)的最大值與最小值.
(3)由題意可得2α+$\frac{π}{4}$+2β+$\frac{π}{4}$=2kπ+π,k∈Z,求得α+β=kπ+$\frac{π}{4}$,從而求得tan(α+β)的值.
解答 解:(1)∵函數(shù)f(x)=2acos2x+bsinxcosx=acos2x+$\frac{2}$sin2x+a,
由f(0)=2a=2,可得a=1;由f($\frac{π}{3}$)=-$\frac{a}{2}$+$\frac{\sqrt{3}}{4}$b+a=$\frac{1}{2}$+$\frac{{\sqrt{3}}}{2}$,求得b=2.
綜上可得,a=1,b=2.
(2)由(1)可得f(x)=cos2x+sin2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
故函數(shù)f(x)的最大值為$\sqrt{2}$+1,最小值為-$\sqrt{2}$+1.
(3)∵α-β≠kπ,k∈z,且f(α)=f(β),∴2α+$\frac{π}{4}$+2β+$\frac{π}{4}$=2kπ+π,k∈Z,
求得α+β=kπ+$\frac{π}{4}$,∴tan(α+β)=1.
點(diǎn)評 本題主要考查三角函數(shù)的恒等變換,正弦函數(shù)的值域,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {0,1,2} | C. | {0,1,2,3} | D. | (-1,0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x≤3,x3-27≤0 | B. | ?x>3,x3-27≤0 | C. | ?x>3,x3-27≤0 | D. | ?x≤3,x3-27≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com