分析 (1)由四邊形A1B1A2B2面積4,得ab=2,由橢圓的離心率為$\frac{\sqrt{3}}{2}$,得$\frac{c}{a}=\frac{\sqrt{3}}{2}$,由此求出a,b,從而能求出橢圓C的方程.
(2)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,得(4k2+1)x2+8kmx+4m2-4=0,由此利用弦長(zhǎng)公式、根的判別式、直線垂直、圓的性質(zhì),結(jié)合已知條件,能求出直線l被圓O截得的弦長(zhǎng).
解答 解:(1)∵四邊形A1B1A2B2與四邊形F1B1F2B2的面積為4.
∴$\frac{1}{2}$×2a×2b=4,∴ab=2,
∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,
∴$\frac{c}{a}=\frac{\sqrt{3}}{2}$,結(jié)合a2=b2+c2,得c=$\frac{\sqrt{3}}{2}$a,b=$\frac{1}{2}a$,(2分)
∴a2=4,則b=1,∴橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.(5分)
(2)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,得(4k2+1)x2+8kmx+4m2-4=0,
設(shè)點(diǎn)M(x1,y1),N(x2,y2),則△=64k2m2-4(4k2+1)(4m2-4)>0,
即m2<4k2+1,${x}_{1}+{x}_{2}=-\frac{km}{4{k}^{2}+1}$,${x}_{1}{x}_{2}=\frac{4{m}^{2}-4}{4{k}^{2}+1}$,(8分)
則${y}_{1}{y}_{2}=(k{x}_{1}+m)(k{x}_{2}+m)={k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$,
由OM⊥ON,得$\overrightarrow{OM}•\overrightarrow{ON}=0$,即x1x2+y1y2=0,
∴$({k}^{2}+1){x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$=0,即(k2+1)•$\frac{4{m}^{2}-4}{4{k}^{2}+1}$+km•(-$\frac{8km}{4{k}^{2}+1}$)+m2=0,
整理可得${m}^{2}=\frac{4{k}^{2}+4}{5}$,即|m|=$\frac{2\sqrt{5}•\sqrt{{k}^{2}+1}}{5}$,①
把①代入m2<4k2+1,得,該不等式恒成立.(10分)
以F1F2為直徑的圓的圓心為(0,0),半徑為$\sqrt{3}$.
圓心O到直線l的距離為d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{5}}{5}$,
則直線l被圓O截得的弦長(zhǎng)為:2$\sqrt{3-\frac{4}{5}}=\frac{2\sqrt{55}}{5}$.(12分)
點(diǎn)評(píng) 本題考查橢圓方程求法,考查弦長(zhǎng)的求法,考查橢圓、韋達(dá)定理、根的判別式、直線方程、弦長(zhǎng)公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 98 | B. | 99 | C. | 100 | D. | 101 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=2sin(\frac{x}{3}-\frac{π}{6})$ | B. | $y=\frac{1}{2}sin(3x+\frac{π}{6})$ | C. | $y=\frac{1}{2}sin(3x-\frac{π}{6})$ | D. | $y=\frac{1}{2}sin(\frac{x}{3}-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(sinα)>f(cosβ) | B. | f(cosα)<f(cosβ) | C. | f(sinα)<f(cosβ) | D. | f(sinα)<f(sinβ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[3,\frac{7}{2}]$ | B. | $[1,\frac{5}{4}]$ | C. | [63,71] | D. | [127,143] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $±\frac{2}{3}$ | B. | $\frac{4}{3}$或$\frac{2}{3}$ | C. | -1或1 | D. | $-\frac{4}{3}$或$-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com