分析 設事件A表示“甲猜對”,事件B表示乙猜對,甲、乙二人各猜一次謎,則恰有一人猜對的概率為P(A$\overline{B}$+$\overline{A}$B)=P(A$\overline{B}$)+P($\overline{A}$B),由此能求出結果.
解答 解:設事件A表示“甲猜對”,事件B表示乙猜對,
則P(A)=$\frac{4}{5}$,P(B)=$\frac{2}{3}$,
∴甲、乙二人各猜一次謎,則恰有一人猜對的概率:
P(A$\overline{B}$+$\overline{A}$B)=P(A$\overline{B}$)+P($\overline{A}$B)
=$\frac{4}{5}×(1-\frac{2}{3})$+(1-$\frac{4}{5}$)×$\frac{2}{3}$
=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.
點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意相互獨立事件概率乘法公式、互斥事件概率加法公式、對立事件概率計算公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 雙曲線、橢圓 | B. | 橢圓、拋物線 | C. | 雙曲線、拋物線 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
f(x)=Asin(ωx+φ), | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x≠0,x2≤0 | B. | ?x=0,x2≤0 | C. | ?x0≠0,${x_0}^2≤0$ | D. | ?x0=0,${x_0}^2≤0$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com