14.已知復(fù)數(shù)z滿足z=(z+1)i,則|z|=(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:∵復(fù)數(shù)z滿足z=(z+1)i,∴z=$\frac{i}{1-i}$=$\frac{i(1+i)}{(1-i)(1+i)}$=$-\frac{1}{2}$+$\frac{1}{2}$i,
則|z|=$\sqrt{(-\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知如圖程序框圖(如圖),若輸入a、b分別為10、4,則輸出的a的值為( 。
A.0B.2C.4D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,sinA-cosA=$\frac{17}{13}$,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow a$=(cosθ,1),向量$\overrightarrow b$=(1,-1),則|$\overrightarrow a$-$\overrightarrow b$|的最小值是(  )
A.4B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.高一某班第7學(xué)習(xí)小組在期末的數(shù)學(xué)測(cè)試中,得135分的1人,122分的2人,110分的4人,90分的2人,則該學(xué)習(xí)小組數(shù)學(xué)成績(jī)的平均數(shù)、中位數(shù)分別是( 。
A.110,110B.110,111C.111,110D.112,111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知tan(α+β)=-3,tan(α-β)=2,則$\frac{sin2α}{cos2β}$的值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是$({0,\frac{e^2}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=-2sin(2x+φ)(|φ|<π),若($\frac{π}{5}$,$\frac{5}{8}$π)是f(x)的一個(gè)單調(diào)遞增區(qū)間,則φ的取值范圍是( 。
A.$[-\frac{9}{10}π,-\frac{3}{10}π]$B.$[\frac{2}{5}π,\frac{9}{10}π]$C.$[\frac{π}{10},\frac{π}{4}]$D.$[-π,-\frac{π}{10}]∪(\frac{π}{4},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等差數(shù)列{an}中,已知a1=3,a3=7,則公差d=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案