已知等比數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,n∈N*,則實(shí)數(shù)a的值是
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得 a1=3+a,a2=s2-s1=6,a3=s3-s2=18,根據(jù)等比數(shù)列的定義可得36=(3+a)•18,解方程求出實(shí)數(shù)a的值.
解答: 解:由題意可得 a1=3+a,a2=s2-s1=6,a3=s3-s2=18,∴36=(3+a)•18,
∴a=-1,
故答案為:-1.
點(diǎn)評(píng):本題考查等比數(shù)列的定義和性質(zhì),等比數(shù)列的前n項(xiàng)和公式,第n項(xiàng)與前n項(xiàng)和的關(guān)系,求出等比數(shù)列的前三項(xiàng),是解題的關(guān)鍵.本題的解答比較簡潔,也可以利用通項(xiàng)公式來解答,比本題的解答復(fù)雜.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(b>a>0)的左頂點(diǎn)A作斜率為1的直線l,l與雙曲線的兩條漸近線相交于B,C兩點(diǎn),且|AB|=|BC|,則雙曲線的離心率為( 。
A、
3
B、3
C、
10
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
16-4x
的值域是(  )
A、[0,+∞)
B、[0,4]
C、[0,4)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=|4x-a|在區(qū)間(-∞,4]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
①sin2α=2cosαsinα;②sin3α=(4cos2α-1)sinα;③sin4α=(8cos3α-4cosα)sinα;
④sin5α=(16cos4α-12cos2α+1)sinα;⑤sin6α=(32cos5α-32cos3α+6cosα)sinα;
⑥sin7α=(64cos6α-80cos4α+24cos2α-1)sinα;⑦sin8α=(pcos7α+mcos5α+ncos3α+qcosα)sinα.
可以推測,m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
3x,x≤0
,則f(f(log3
1
2
))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行圖中的程序框圖,那么輸出的n為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x<0},B={x|-
5
<x
5
},則( 。
A、A∩B=∅B、A∪B=R
C、B⊆AD、A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=n2-2n+5,則它的通項(xiàng)公式是
 

查看答案和解析>>

同步練習(xí)冊答案