數(shù)列{an}的前n項和Sn=n2-2n+5,則它的通項公式是
 
考點:數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:在數(shù)列遞推式中取n=1求首項,當(dāng)n≥2時,得到an=Sn-Sn-1=3-2n,驗證首項后得答案.
解答: 解:由Sn=n2-2n+5,
當(dāng)n=1時,a1=S1=4;
當(dāng)n≥2時,an=Sn-Sn-1=n2-2n+5-[(n-1)2-2(n-1)+5]=3-2n.
驗證n=1時上式不成立.
an=
4,n=1
3-2n,n≥2

故答案為:an=
4,n=1
3-2n,n≥2
點評:本題考查了由數(shù)列的前n項和求數(shù)列的通項公式,關(guān)鍵是注意驗證n=1時的情況,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn=3n+a,n∈N*,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-(2+4m)x+8m=0},B={x|x<0},若命題“A∩B=∅”是假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=9,b=10,A=60°,則這樣的三角形解的個數(shù)為( 。
A、一解B、兩解
C、無解D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2-(3a-1)x+a2在區(qū)間(1,+∞)上單調(diào)遞增,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y是正實數(shù),且x+3y=1,求當(dāng)x、y分別取何值時,
1
x
+
1
y
的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+2,
(Ⅰ)若f(x)在(-∞, 
1
2
]
是減函數(shù),在[
1
2
, +∞)
是增函數(shù),求實數(shù)a的值;
(Ⅱ)求實數(shù)a的取值范圍,使f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,n∈N*,an>0,數(shù)列{an}的前n項和為Sn,且滿足an+1=
2
Sn+1+Sn-2

(1)求{Sn}的通項公式;
(2)設(shè){bk}是{Sn}中的按從小到大順序組成的整數(shù)數(shù)列.
①求b3;
②存在N(N∈N*),當(dāng)n≤N時,使得在{Sn}中,數(shù)列{bk}有且只有20項,求N的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國是水資源匱乏的國家,為鼓勵節(jié)約用水,某市打算出臺一項水費政策措施.規(guī)定:每季度每人用水量不超過5噸時,每噸水費收基本價1.3元;若超過5噸而不超過6噸時,超過部分的水費按基本價3倍收取;若超過6噸而不超過7噸時,超過部分的水費按基本價5倍收取.某人本季度實際用水量為x(0≤x≤7)噸,應(yīng)交水費為f(x)元.
(Ⅰ)求f(4),f(5.5),f(6.5)的值;
(Ⅱ)試求出函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案