已知函數(shù)f(x)=
log2x,x>0
3x,x≤0
,則f(f(log3
1
2
))=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵函數(shù)f(x)=
log2x,x>0
3x,x≤0
,
∴f(log3
1
2
)=3log3
1
2
=
1
2

f(f(log3
1
2
))=f(
1
2
)=log2
1
2
=-1.
故答案為:-1.
點(diǎn)評:本題考查函數(shù)的性質(zhì)的合理運(yùn)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,測量河對岸的塔的高度AB,可以選擇與B在同一水平面內(nèi)的兩個點(diǎn)C、D.測得由C望A的仰角∠ACB=45°,方位角∠BCD═60°、∠BDC=75°,又測得C、D相距20米.試求塔的高度AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足x∈A,y∈B,
(1)若A={0,1,2},B={0,1,2},求x+yi為虛數(shù)的概率;
(2)若A=[0,1],B=[0,1],求x、y滿足不等式組
y≥x2
y≤
x
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的首項(xiàng)為a1,公比為q(q≠-1),用Sn→m表示這個數(shù)列的第n項(xiàng)到第m項(xiàng)共m-n+1項(xiàng)的和.
(Ⅰ)計算S1→3,S4→6,S7→9,并證明它們?nèi)猿傻缺葦?shù)列;
(Ⅱ)受上面(Ⅰ)的啟發(fā),你能發(fā)現(xiàn)更一般的規(guī)律嗎?寫出你發(fā)現(xiàn)的一般規(guī)律,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,n∈N*,則實(shí)數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個運(yùn)行程序框圖,則輸出的S=(  )
A、7B、11C、14D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a2-1+(a+1)i(a∈R)為純虛數(shù),則
.
z
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95),由此得到頻率分布直方圖,如右圖.
估算眾數(shù),中位數(shù),平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y是正實(shí)數(shù),且x+3y=1,求當(dāng)x、y分別取何值時,
1
x
+
1
y
的值最小.

查看答案和解析>>

同步練習(xí)冊答案