已知a,b∈R,則下列命題正確的是( 。
A、若a>b,則a2>b2
B、若|a|>b,則a2>b2
C、若a>|b|,則a2>b2
D、若a≠|(zhì)b|,則a2≠b2
考點:不等關系與不等式
專題:不等式的解法及應用
分析:舉反例可排除ABD,至于C由不等式的性質(zhì)平方可證.
解答: 解:選項A,取a=-1,b=-2,顯然滿足a>b,但不滿足a2>b2,故錯誤;
選項B,取a=-1,b=-2,顯然滿足|a|>b,但不滿足a2>b2,故錯誤;
選項D,取a=-1,b=1,顯然滿足a≠|(zhì)b|,但a2=b2,故錯誤;
選項C,由a>|b|和不等式的性質(zhì),平方可得a2>b2,故正確.
故選:C.
點評:本題考查不等式與不等關系,舉反例是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=an2-2(n∈N+),且a1=a,a2012=b(a,b>2)則a1a2…a2011=
 
 (用a,b表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列判斷正確的是( 。
A、命題“若x2=1,則x=1”的否命題是“若x2=1,則x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分條件
C、△ABC中,“A>B”是“cos2A<cos2B”的充要條件
D、命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-1<x<1},B={x|x(x-2)<0},則A∩B(  )
A、{x|-1<x<0}
B、{x|0<x<1}
C、{x|-1<x<2}
D、{x|x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos110°cos50°+sin110°sin50°等于( 。
A、
1
2
B、
3
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知兩座燈塔A和B與海洋觀察站C的距離都等于1km,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為(  )
A、1km
B、
2
km
C、
3
km
D、2km

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校甲、乙兩位學生在連續(xù)5次的月考中,成績(均為整數(shù))統(tǒng)計如莖葉圖所示,其中一個數(shù)字被墨跡污染了,則甲的平均成績不超過乙的平均成績的概率是( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
8
3
B、
4
3
C、8
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+ax2-x,a∈R.
(Ⅰ)當a=
1
4
時,求函數(shù)y=f(x)的極值;
(Ⅱ)是否存在實數(shù)b∈(1,2),使得當x∈(-1,b]時,函數(shù)f(x)的最大值為f(b)?若存在,求實數(shù)a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案