求下列函數(shù)的導(dǎo)函數(shù):
(1)y=ln(x2+lnx);
(2)y=2x2sin2x.
考點(diǎn):簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)(2)利用復(fù)合函數(shù)的導(dǎo)數(shù)運(yùn)算法則即可得出.
解答: 解:(1)y′=
2x+
1
x
x2+lnx
=
2x2+1
x3+xlnx
(x>0)

(2)y′=4xsin2x+4x2cos2x.
點(diǎn)評(píng):本題考查了復(fù)合函數(shù)的導(dǎo)數(shù)運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,an的前項(xiàng)和為Sn;若有a1=-2014,
S2015
2015
-
S2013
2013
=2,則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x-1).
(1)設(shè)g(x)=f(x)+a,若函數(shù)y=g(x)在(2,3)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=f(x)+
m
f(x)
,是否存在正實(shí)數(shù)m,使得函數(shù)y=h(x)在[3,9]內(nèi)的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若M={x∈Z|log
1
3
x≥-1
},則集合M的真子集的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-1<0},B={x|y=
log
1
2
x
},則A∩B等于(  )
A、{x|x>1}
B、{x|0<x<1}
C、{x|x<1}
D、{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3-2x
-x3+2,解f(
x
4-3x
)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為C1D1,B1C1的中點(diǎn),AC∩BD=P,A1C1∩EF=Q,求證:
(1)D、B、F、E四點(diǎn)共面;
(2)若A1C交平面DBFE于R點(diǎn),則P、Q、R三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)F(x)=ax2+2(a-3)x+1在區(qū)間(-1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線x2=2py(p>0)的焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,若|BC|=
2
|BF|,且|AF|=4+2
2
,則直線AB與拋物線x2=2py(p>0)所圍成的封閉圖形的面積為( 。
A、4
2
B、2
2
C、2
3
D、4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案