分析 根據(jù)f′(x)=Asin(ωx+φ)的圖象,由由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,有特殊點的坐標(biāo)求出φ的值,可得f(x)的解析式,再利用余弦函數(shù)的周期性,求得要求式子的值.
解答 解:函數(shù)f(x)=-$\frac{A}{ω}$cos(ωx+φ)(A>0,ω>0)的導(dǎo)函數(shù)f′(x)=Asin(ωx+φ)的圖象,
可得A=2,把原點(0,0)代入,可得sinφ=0,故可取φ=0.
再根據(jù)$\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=2,求得ω=$\frac{π}{4}$,∴f(x)=-$\frac{8}{π}$cos($\frac{π}{4}$x).
再根據(jù)函數(shù)的周期 T=8,又f(1)+f(2)+f(3)+…+f(8)=0,
∴f(1)+f(2)+f(3)+…+f(2015)=[f(1)+f(2)+f(3)+…+f(2016)]-f(2016)
=252×0-f(2016)=0-f(8)=$\frac{8}{π}$,
故答案為:$\frac{8}{π}$.
點評 本題主要考查余弦函數(shù)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,有特殊點的坐標(biāo)求出φ的值,余弦函數(shù)的周期性的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{\sqrt{2}}{2}$ | C. | 0 | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{\sqrt{5}+1}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}+3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | 17 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | (-∞,0)∪(2,3) | C. | (-∞,0)∪(3,+∞) | D. | (0,2)∪(3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com