分析 由an+1+(-1)nan=2n-1,可得:a2k+1+a2k=4k-1,a2k-a2k-1=4k-3,a2k+2-a2k+1=4k+1.于是a2k+1+a2k-1=2,a2k+a2k+2=8k.由此可得{an}的80項和.
解答 解:由an+1+(-1)nan=2n-1,
得a2k+1+a2k=4k-1,a2k-a2k-1=4k-3,a2k+2-a2k+1=4k+1.
可得a2k+1+a2k-1=2,a2k+a2k+2=8k.
則S40=2×20+8(1+3+…+39)
=40+8×$\frac{20(1+39)}{2}$=3240.
故答案為:3240.
點評 本題考查了等差數列的前n項和公式、“分組求和”方法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | B. | -$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | D. | $\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x-2y+7=0 | B. | x+2y-13=0或x-2y+7=0 | ||
C. | x+2y-13=0 | D. | x+2y+7=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | -$\frac{4}{5}$i | D. | $\frac{4}{5}$i |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com