3.已知等差數(shù)列{an}中,a1+a3+a5=105,a4=33,則a20等于( 。
A.-1B.1C.3D.5

分析 利用等差數(shù)列的通項公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a1+a3+a5=105,a4=33,
∴3a1+6d=105,a1+3d=33,
聯(lián)立解得a1=39,d=-2.
則a20=39-2×19=1.
故選:B.

點(diǎn)評 本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ex
(1)當(dāng)x>0時,設(shè)g(x)=f(x)-(2a-1)x(a∈R),試討論函數(shù)g(x)的單調(diào)性;
(2)證明當(dāng)x∈[$\frac{1}{3}$,1]時,f(x)<x2+x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinx•cosx
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,滿足c=$\sqrt{3}$,f(C)=$\frac{3}{2}$,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合{f(x)|f(x)=ax2-|x+1|+2a<0,x∈R}為空集,則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{{\sqrt{3}+1}}{2}$,+∞)B.[$\frac{{\sqrt{3}+1}}{4}$,+∞)C.[$\frac{{\sqrt{3}-1}}{4}$,+∞)D.(-∞,$\frac{{\sqrt{3}-1}}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A(0,2),點(diǎn)P(x,y)坐標(biāo)的(x,y)滿足$\left\{\begin{array}{l}x-y-8≤0\\ x+y-14≤0\\ x≥6\end{array}\right.$,則z=S三角形OAP(O是坐標(biāo)原點(diǎn))的最值的最優(yōu)解是( 。
A.最小值有無數(shù)個最優(yōu)解,最大值只有一個最優(yōu)解
B.最大值、最小值都有無數(shù)個最優(yōu)解
C.最大值有無數(shù)個最優(yōu)解,最小值只有一個最優(yōu)解
D.最大值、最小值都只有一個最優(yōu)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$的終點(diǎn)A、B、C在一條直線上,且$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,則以下等式成立的是( 。
A.$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{3}{2}$$\overrightarrow{OB}$B.$\overrightarrow{OC}$=-$\overrightarrow{OA}$+2$\overrightarrow{OB}$C.$\overrightarrow{OC}$=$\frac{3}{2}$$\overrightarrow{OA}$-$\frac{1}{2}$$\overrightarrow{OB}$D.$\overrightarrow{OC}$=$\overrightarrow{OA}$-2$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A,B為拋物線y2=4x上異于原點(diǎn)的兩個點(diǎn),O為坐標(biāo)原點(diǎn),直線AB的斜率為2,則△ABO重心的縱坐標(biāo)為( 。
A.2B.$\frac{4}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“a=0”是“函數(shù)f(x)=|x-a|是偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的80項和為3240.

查看答案和解析>>

同步練習(xí)冊答案