求下列各函數(shù)的導(dǎo)數(shù):
(1)y=3x2+xsinx;
(2)y=
x2
x+3
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式直接進(jìn)行求導(dǎo)即可.
解答: 解:(1)∵y=3x2+xsinx;
∴y′=(3x2)′+( xsinx)′=6x+x′sinx+x (sinx)′=6x+sinx+xcosx.
(2)∵y=
x2
x+3

∴y′=(
x2
x+3
)′=
2x(x+3)-x2
(x+3)2
=
x2+6x
(x+3)2
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,要求熟練掌握常見函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運(yùn)算法則,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)(-1,0),圓C的圓心為C(2,0).
(Ⅰ)若圓C的半徑為2,直線l截圓C所得的弦長也為2,求直線l的方程;
(Ⅱ)若直線l與圓C相切,試寫出圓C的半徑r與直線l的斜率k關(guān)系式;若直線的傾斜角θ∈[-
π
6
π
6
],求圓C的半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“函數(shù)f(x)=ax2-4x(a>0)在(-∞,2]上單調(diào)遞減”,命題q:“對(duì)任意的實(shí)數(shù)x,16x2-16(a-1)x+1>0恒成立”,若命題“p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,2
3
sinx),
b
=(2cosx,sinx),設(shè)f(x)=
a
b
-
3

(1)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若0<θ
π
2
,且y=f(x+θ)為偶函數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+2)的定義域?yàn)閇1,2],求f(2x+1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),點(diǎn)A(2,0),B(0,2),C(cosα,sinα),且0<α<π.
(Ⅰ)若
AC
BC
=
7
5
,求tanα的值;
(Ⅱ)若|
OA
+
OC
|=
7
,求
OB
OC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
tanα
1-tanα
=-
1
3

(Ⅰ)求
sinα-2cosα
3sinα+cosα
的值;
(Ⅱ)若α∈(0,π),β∈(0,
π
2
),cos(2β+α)=
5
5
,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a、b滿足a+3=b(a-1),則ab的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中與A1B是異面直線的棱有
 
條.

查看答案和解析>>

同步練習(xí)冊(cè)答案