8.如果$\frac{1-cosα}{sinα}=\frac{1}{2}$,那么sinα+cosα的值是(  )
A.$\frac{7}{5}$B.$\frac{8}{5}$C.1D.$\frac{29}{15}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可得:5cos2α-8cosα+3=0,進(jìn)而解得sinα,cosα的值,即可得解.

解答 解:∵$\frac{1-cosα}{sinα}=\frac{1}{2}$,
∴整理可得:sinα=2-2cosα,
又∵sin2α+cos2α=1,
∴(2-2cosα)+cos2α=1,可得:5cos2α-8cosα+3=0,
∴解得:$\left\{\begin{array}{l}{cosα=\frac{3}{5}}\\{sinα=\frac{4}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{cosα=1}\\{sinα=0}\end{array}\right.$(舍去),
∴sinα+cosα=$\frac{3}{5}+\frac{4}{5}$=$\frac{7}{5}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在6件產(chǎn)品中有4件合格品,2件次品,產(chǎn)品檢驗(yàn)時(shí),從中抽取3件,至少有1件次品的抽法有( 。
A.10B.16C.32D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.用數(shù)學(xué)歸納法證明“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n≥2)”時(shí),由n=k的假設(shè)證明n=k+1時(shí),不等式左邊需增加的項(xiàng)數(shù)為( 。
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x≥2}\end{array}\right.$若方程f(x)=a有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(1,3)B.(0,3)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=a1,b4=a8,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

若變量,滿足條件的最大值是( )

A.3 B.2 C.1 D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(理)試卷(解析版) 題型:解答題

選修4-5:不等式選講

設(shè)函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

若變量,滿足條件的最大值是( )

A.3 B.2

C.1 D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,第n個(gè)三角形數(shù)為$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形數(shù)N(n,4)=n2,
五邊形數(shù)N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n,
六邊形數(shù)N(n,6)=2n2-n,
據(jù)此可推測(cè)N(n,k)的表達(dá)式,由此計(jì)算N(8,22)=( 。
A.284B.568C.1136D.2272

查看答案和解析>>

同步練習(xí)冊(cè)答案