分析 對(duì)于等式(1+x)n=1+a1x+a2x2+…+anxn,令x=1并且兩邊同時(shí)取導(dǎo)數(shù)可得n2n-1=a1+2a2+3a3+…+nan,可得$\sum_{i=1}^n{S_i}$=1×1+2×21+3×22+…+n•2n-1,再用錯(cuò)位相減法求得$\sum_{i=1}^n{S_i}$的值.
解答 解:對(duì)于等式(1+x)n=1+a1x+a2x2+…+anxn,
令x=1并且兩邊同時(shí)取導(dǎo)數(shù)可得,n2n-1=a1+2a2+3a3+…+nan,
∴$\sum_{i=1}^n{S_i}$=1×1+2×21+3×22+…+n•2n-1,
∴2$\sum_{i=1}^n{S_i}$=1×2+2×22+3×23+…+n•2n,
錯(cuò)位相減法可得-$\sum_{i=1}^n{S_i}$=1+2+22+23+…+2n-1-n2n =$\frac{1×(1-{2}^{n})}{1-2}$-n2n=(1-n)2n-1,
化簡(jiǎn)求得$\sum_{i=1}^n{S_i}$=(n-1)×2n +1,
故答案為:(n-1)×2n +1.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),用錯(cuò)位相減法進(jìn)行數(shù)列求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {x|-1<x≤0} | C. | {x|0≤x<1} | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{225}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{15}}{15}$ | B. | -$\frac{\sqrt{210}}{15}$ | C. | $\frac{\sqrt{210}}{15}$ | D. | -$\frac{\sqrt{15}}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com