精英家教網 > 高中數學 > 題目詳情
已知正方形ABCD的邊長為6,空間有一點M(不在平面ABCD內)滿足|MA|+|MB|=10,則三棱錐A-BCM的體積的最大值是( 。
A、48B、36C、30D、24
分析:由三棱錐A-BCM的體積=三棱錐M-ABC的體積,底面△ABC的面積一定,高最大時,其體積最大;又高由頂點M確定,所以,
當平面MAB⊥平面ABCD時,高最大,體積也最大.
解答:精英家教網解:如圖,由題意知,因為三棱錐A-BCM的體積=三棱錐M-ABC的體積,
底面△ABC的面積一定,當高最大時,體積最大;
當平面MAB⊥平面ABCD時,過點M作MN⊥AB,則MN⊥平面ABCD,
在△MAB中,|MA|+|MB|=10,AB=6,
顯然,當|MA|=|MB|=5時,高MN最大,并且MN=
MA2-AN2
=
52-32
=4,
所以,三棱錐A-BCM的最大體積為:VA-BCM=VM-ABC=
1
3
•S△ABC•MN=
1
3
×
1
2
×6×6×4=24.
故選D
點評:本題通過作圖知,側面與底面垂直時,得出高最大時體積也最大;其解題的關鍵是正確作圖,得高何時最大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正方形ABCD的邊長為1,設
AB
=
a
,
BC
=
b
,
AC
=
c
,則|
a
-
b
+
c
|等于( 。
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正方形ABCD的邊長為
2
,
AB
=
a
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習冊答案