(本題滿分15分)已知橢圓上的動點到焦點距離的最小值為。以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓相交于兩點,為橢圓上一點, 且滿足
為坐標原點)。當 時,求實數(shù)的值.

(Ⅰ)故橢圓的方程為.(Ⅱ)  。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
己知圓C: (x – 2 )+ y 2 =" 9," 直線l:x + y = 0.
(1) 求與圓C相切, 且與直線l平行的直線m的方程;
(2) 若直線n與圓C有公共點,且與直線l垂直,求直線n在y軸上的截距b的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 已知圓過兩點,且圓心上.
(1)求圓的方程;
(2)設是直線上的動點,是圓的兩條切線,為切點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為
.
(Ⅰ)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標方程化為直角坐標方程;
(Ⅱ)曲線是否相交,若相交請求出公共弦的長,若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
求過直線和圓的交點,且滿足下列條件之一的圓的方程.   (1)過原點;       (2)有最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

、已知圓,直線
(1)求證:直線恒過定點;
(2)設與圓交于兩點,若,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(本小題滿分8分)已知,過點M(-1,1)的直線l被圓Cx2 + y2-2x + 2y-14 = 0所截得的弦長為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)圓經過點A(2,-3)和B(-2,-5).
(1)若圓的面積最小,求圓的方程;
(2)若圓心在直線x-2y-3=0上,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分8分)已知點、的坐標分別為、,動點滿足.
(1)求點的軌跡的方程;
(2)過點作直線與軌跡相切,求切點的坐標.

查看答案和解析>>

同步練習冊答案